
Implementation of ALU using RTL to
GDSII flow and on NEXYS 4 DDR FPGA

board
by

Kachhadiya Radhika J.
201915011

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

ELECTRONICS AND COMMUNICATION

with specialization in
Wireless Communication and Embedded Systems

to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

A program jointly offered with
C.R.RAO ADVANCED INSTITUTE OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE

July, 2021

Declaration

I hereby declare that

i) the thesis comprises of my original work towards the degree of Master of
Technology in Electronics and Communications at Dhirubhai Ambani Insti-
tute of Information and Communication Technology & C.R.Rao Advanced
Institute of Applied Mathematics, Statistics and Computer Science, and has
not been submitted elsewhere for a degree,

ii) due acknowledgment has been made in the text to all the reference material
used.

Radhika Kachhadiya

Certificate

This is to certify that the thesis work entitled Implementation of ALU using RTL
to GDSII flow and on NEXYS 4 DDR FPGA board has been carried out by Kach-
hadiya Radhika for the degree of Master of Technology in Electronics and Com-
munications at Dhirubhai Ambani Institute of Information and Communication
Technology & C.R.Rao Advanced Institute of Applied Mathematics, Statistics and
Computer Science under our supervision.

Prof. Rutu Parekh Prof. Yash Agrawal
Thesis Supervisor Thesis Co-Supervisor

i

Acknowledgments

Wisdom is not a product of schooling but of the lifelong attempt to acquire it. -Albert
Einstein

Life is a continuous process of learning. My M.Tech journey is also an impor-
tant part of this process. Completion of the thesis is one of the great achievements
I have in my life. At this point, I would like to express gratitude to all the people
without whom I cannot imagine traveling so far. First of all, I would like to thank
almighty God for giving me the strength to complete the thesis when I have no
clue for the next steps. I want to thank my parents for constantly supporting me
in every situation and motivating me in life.

I would like to thank my thesis supervisors, Prof. Rutu Parekh and Prof. Yash
Agrawal for constant guidance and support throughout my thesis journey. From
giving such beautiful topic advice for the thesis to the last day of the thesis, they
have supported me at each step. They were very patient when I was struggling
in the experiments. Thank you, Mam and Sir, for having faith in me during this
process. I feel exceptionally fortunate to have such a guide who has spent a lot of
time with me discussing, understanding, and learning.

Lastly, I would like to thank all my friends on the campus to enrich my two
years of Mtech journey beautiful. I will always be thankful to DAIICT for what it
has given me.

ii

Contents

Abstract v

List of Principal Symbols and Acronyms vi

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Related Work . 2
1.2 Motivation . 4
1.3 Thesis Outline . 4

2 Arithmetic-Logic Unit 6
2.1 Arithmetic Operations . 7
2.2 Logical Operations . 7
2.3 Shifting Operations . 8
2.4 8-bit ALU Implementation . 9

2.4.1 Carry Look-Ahead adder . 10
2.4.2 Modified Booth’s algorithm 11

3 RTL to GDSII flow 14
3.1 Architechture . 16
3.2 RTL level . 16
3.3 Synthesis . 16
3.4 STA . 17
3.5 Physical Design . 17
3.6 GDSII . 18

4 FPGA Implementation 19
4.1 FPGA Architechture . 19

iii

4.2 NEXYS 4 DDR FPGA board . 21

5 Results and Comparisons 24
5.1 Logical Operation Results . 25
5.2 Shifting Operation Results . 25
5.3 Arithmetic Operation Results . 26
5.4 RTL schematic and Layout . 27
5.5 Comparison between 45nm and 180nm 29

6 Conclusion and Future work 30

References 31

iv

Abstract

An ALU is the major part of the CPU which performs various arithmetic and logi-
cal operations. It is one of the most frequently used modules in the processor. This
paper presents the implementation of 8-bit ALU using RTL to GDSII stream. The
tools used for implementation are Cadence tools, Genus and Innovus. The tech-
nology node used for implementation is the 45nm technology node and 180nm
technology node. The major focus of this thesis is the design optimization in terms
of area, delay and power as the industry demands the chips with high speed and
low power. Further, the results of both 45nm and 180nm has been compared. The
improvement by using 45nm technology in area is 89.59%, in delay is 43.23% and
in power is 4.56%. In addition to that, the implementation of 4-bit ALU is done
on the FPGA board. The board used is the NEXYS 4 DDR FPGA board.

Keywords: ALU, FPGA, Layout, Floor planning, Power planning, Routing, RTL,
Simulations, Synthesis.

v

List of Principal Symbols and Acronyms

ALU Arithmetic-Logic Unit

ASIC Application Specific Integrated Circuit

EDA Electronic Design Automation

FPGA Field Programmable Gate Array

GDSII Graphic Design System II

RTL Register Transfer Level

vi

List of Tables

2.1 Booth Recoding Table . 13

5.1 Comparison Table . 29

vii

List of Figures

1.1 Thesis outline . 5

2.1 A symbolic representation of ALU 7
2.2 ALU Block Diagram . 9
2.3 Carry Look-Ahead Generator . 11
2.4 Modified Booth’s Algorithm . 12

3.1 RTL to GDSII flow . 15
3.2 RTL level . 16
3.3 Physical design flow . 18

4.1 Basic FPGA Architechture (Image source:elprocus.com) 20
4.2 A Simplified CLB (Image source:Wikipedia) 20
4.3 NEXYS 4 DDR FPGA board . 22

5.1 Logical Operations . 25
5.2 Shifting Operations . 26
5.3 Arithmetic Operations . 27
5.4 Synthesized RTL Schematic . 28
5.5 Layout in 45nm technology . 28

viii

CHAPTER 1

Introduction

The expanding request of electronic gadgets which are solid, whose processing
speed is high, that dissipates low power, and which are compact requests ad-
vancement in integrated circuit technology. To satisfy these needs for fast proces-
sors, it is important that every one of the functionalities ought to be present on
a solitary chip, which is a test for a design engineer. To make this undertaking
simpler, there are different apparatuses which can be utilized that contains ASIC
libraries which comprises of essential structure blocks like multiplexer, flip flops,
logic gates and so forth that depends on standard cell design strategies. Using
these libraries, the time required for the implementation is reduced. Here, Ca-
dence environment is used for the implementation of 8-bit ALU. These tools per-
forms all the processes involved in RTL (Register Transfer Level) to GDS (Graphic
Design System) flow and gives the final layout of the chip that is to be fabricated.

This design flow is a very mature and a silicon proven IC design process that
includes different steps like design conceptualization, chip optimization, logical
or physical implementation and design verification. According to the Moore’s
law, the number of transistors will continue to double in every 1.5 years. That
means the same silicon area should accommodate more and more number of tran-
sistors. To achieve this the transistor size is gradually getting reduced. Here, the
technology used for the implementation is 45nm and 180nm technology. The ad-
vantages of the 45nm technology is it uses less chip area that is to be fabricated.
As the area is less the time delay also reduces and as a result the processing speed
increases. Nowadays, these are the major requirements for any chip that is to be
fabricated. RTL to GDSII flow is typical flow for IC designing and here it is used
to implement 8-bit ALU by using Cadence tools. The flow starts with the RTL
coding with is done in Verilog HDL. Further, the process of synthesis is done fol-
lowed by the physical design process. In physical design process, various steps
like floor plan, power plan, routing, etc. are involved. It is done at layout level.

1

Once the layout is made, its GDSII file is generated which is further sent to the
industry for fabrication process.

1.1 Related Work

Most of the work in this area is limited to RTL level. The ALU has been imple-
mented using reversible gates. The designed ALU performs 4 operations. The
coding is done using Verilog and implemented in Cadence 180nm technology in
[1]. However, in this paper the designed ALU performs 4 operations and is imple-
mented in 180nm technology. The authors have given the idea of 16-bit Arithmetic
Units with Input Gating, Power Gating and a combination of Input Gating and
Power Gating. Its design, simulation and verification for their functionality has
been done by using Cadence Virtuoso ADE spectre in [2]. Here, implementation
is done at circuit level. In [3], the concept of Radix-2 Booth Multiplier is given and
is implementation is done using Xilinx-Vivado tool. Here, in this implementation
area, power and number of cells have been reduced. However, the implementa-
tion is done at RTL level. In [4], the authors proposed the design of 4-bit ALU and
its implementation is done on BASYS 3 FPGA kit. The implementation is done at
RTL level and for testing and verification of the implemented design simulated
waveforms has been used. Further, it is synthesized using RTL analysis. In [5],
comparative study between three arithmetic multipliers have been done in terms
of delay and power. The implementation is done using Vering in Vivado platform
at RTL level. Also, the implementation is done on NEXYS 4 FPGA board.

The authors have done the comparative study between seven 4-bit adders in
terms of speed of operations and number of slices in FPGA in [6], comparisons
have been done by using the spartan 3E FPGA kit. The authors have implemented
ALU on the build microcontroller on FPGA with Xilinx ISE tool in [7]. However,
the implementation is done at RTL level. The implementation 16-bit ALU which
performs 12 operations. It is implemented in Xilinx Vivado 14.7 tool. Likewise
it’s implementation is carried out on BASYS 3 Artix 7 FPGA board in [8]. How-
ever, it is implemented at RTL level and for addition operation full adder is used
while for multiplication operation array multiplier has been used. The authors
have proposed an ALU design implemented in 180nm technology using Cadence
Virtuoso tool in [9]. The architechture of 8-bit ALU and 16-bit ALU has been pre-
sented and its implemenation is done in Spartan 3E FPGA device using Verilog

2

HDL in [10]. Here, the implementation is done at RTL level.

Five different multipliers have been compared in terms of area, delay and
power in [11]. A review is given about different types of implementation of Booth
multiplier and its architechture is presented with its advantages in [12]. In [13], a
review is given on various high speed multipliers with different techniques and
by using different adders. The authors have implemented ALU which performs
8 operations in Xilinx 14.7 tool in [14]. The modules are written in Verilog HDL
and for synthesis, physical design innovus tool from Cadence is used. The im-
plemented ALU performs 8 different operations. In [15], the authors have im-
plemented 4-bit Booth multiplier and 8-bit Modified Booth multiplier and have
explained the complete algorithm. In [16], the 4-bit and 8-bit ALU has been im-
plemented and it is synthesized using GDI standard cells. Further, it is compared
with the CMOS standard cells. The implementation is done in 180nm technology
using Cadence Virtuoso tool. In [17], the authors have presented the design of
8-bit ALU by cascading 1-bit ALUs using reversible logic. Here, the simulation
and verification of the design is performed in 180nm technology using Cadence
tool. The implemenatation is done at RTL level.

In [18], the idea of the complete physical design process has been given with
the optimization in area and power by using smaller technology node. The au-
thors have implemented 8-bit ALU that performs 8-operationa using Virtuoso tool
by Cadence in [19]. The implementation is done by using 180nm technology. The
aim of this article was to reduce the number of transistors. However, the imple-
mentation is done by using 180nm technology and the calculation of delay and
power consumption is not done. The 4-bit ALU is designed by using full adder,
4xl and 2xl multiplexers and gate sub-modules such as ”XOR”, ”AND”, ”OR” and
”Inverter”. ALU executes a total of eight operations, four of which are arithmetic
operations, the rest are logical operations. Three kinds of arithmetic operations
are performed are adders, subtractors and comparators. The four logical opera-
tions are AND, OR, XOR and NOT in [20]. The existing multiplier designs and
the proposed method were simulated by using Verilog HDL. The schematics for
the 8 bit array multiplier was developed in 180nm technology by using Cadence
tool in [21]. Also, the schematic for the full adder, full adder using 2x1 multiplexer
and full adder using 4x1 multiplexer were implemented. Later, the performance
parameters were compared by implementing array multipliers using different full
adders. The step by step optimization approach for the ALU at the logic circuit

3

level has been presented in [22].

The authors have implemented different logic gate cells in [23]. Here, the rect-
angular shapes for the cells are created and the area of the every cell is optimized.
In [24], the authors have implemented a multiplier that reduces partial products.
The authors have implemented 1-bit full subtractor in [25]. The simulations were
performed by using Cadence Schematic editor and the layout is emulated by Ca-
dence Virtuoso editor. In [26], the authors have presented the idea for creating
graphical user interface for the opensource VLSI tool that is Qflow. The authors
have given the idea of CMOS Comparator and implemented that is compact in
size and uses low power with the supply voltage of 1.8V in [27]. It is designed
and implemented in 180nm technology. In [28], the authors have presented the
idea for implementation of ALU and focuses mainly on reducing the power con-
sumption and reducing areaby using GDI technique. Here, 4x1 multiplexer, 2x1
multiplexer and a full adder is implemented in 180nm technology.

1.2 Motivation

Based on the above discussion, it is seen that most of the work done in this area is
limited to RTL level or circuit level. Also, in most of the cases the implementation
is done in 180nm technology node. The current industry demands chips with low
power and area. So implementation in lower technology nodes is necessary as
in that the area, delay and power will be lesser. So here the implementation is
done in 45nm technology. Also, its area, delay and power has been optimized
which is the requirement of the industry. In addition to that, the implementation
is compared with the implementation in 180nm technology and the results shows
45nm technology node gives better results.

1.3 Thesis Outline

This Thesis presents work on RTL to GDSII flow and optimization of area, delay
and power in the circuit. This is organized in 6 chapters.

• Chapter 2 contains the brief introduction of Arithmetic-Logic Unit and its

4

working. Also, its implementation is given with the explanation of adder
and multiplier that are used in the circuit.

• Chapter 3 contains the details of the complete RTL to GDSII flow. The ap-
plication of this flow is presented here. Also, the explanation of each step of
the flow is given.

• Chapter 4 contains the brief introduction on Field Programmable Gate Ar-
ray (FPGA). Also, the implementation of the circuit on the FPGA board is
presented here.

• Chapter 5 contains brief details about results and the comparison with the
existing work.

• Chapter 6 contains details about future works and conclusion of thesis.

Figure 1.1: Thesis outline

5

CHAPTER 2

Arithmetic-Logic Unit

An Arithmetic logic unit (ALU) is a significant segment of the central processing
unit of a PC framework. It does all cycles identified tasks which are related to log-
ical and arithmetic operations. In some microchip structures, the ALU is isolated
into the Arithmetic unit (AU) and the Logic unit (LU).

An ALU can be planned by specialists for computation of any operation. As
the activities become more complex, the ALU likewise turns out to be more costly,
occupies more area in the CPU and disperses more power. That is the reason engi-
neers make the ALU sufficiently incredible to guarantee that the CPU is addition-
ally amazing and quick, yet not really complex as to become restrictive in terms
of cost and different inconveniences. The fundamental functions of the ALU are
to do logic and arithmetic operations, including bit-wise shifting tasks. These are
fundamental operations that should be done on practically any information that
is being handled by the CPU.

In computing, an arithmetic-logic unit is a combinational digital circuit that is
used to perform various arithmetic operations and bit-wise logical operations on
integer binary numbers. This is in contrast to floating point unit that operates on
floating point numbers. It is the fundamental building block of many of the com-
puting circuits including central processing unit, floating point unit and graphics
processing unit. An arithmetic-logic unit is an important part of Central Process-
ing Unit in Computer. It carries out various arithmetic and logic operations. It
performs different logical operations like AND, OR, NOT, etc. and arithmetic
operations like Addition, Subtraction, etc. It also performs various shifting oper-
ations. The input to an ALU are the data that are to be operated and are called
operands and one code that indicates the operation that is to be performed. The
output of the ALU is the result of the operation that is performed.

6

Figure 2.1: A symbolic representation of ALU

2.1 Arithmetic Operations

• Addition: The two inputs Op1 and Op2 are summed and the result appears
at Out along with the carry-out.

• Subtraction: Op2 is being subtracted from Op1 (or vice versa) and the differ-
ence appears at Y and carry-out. For this operation, carry-out is successfully
a "borrow" indicator.

• Multiplication: The two inputs are being multiplied and the result is shown
at Out.

• Increment: The input Op1 is incremented by one and the result appears at
Out.

• Decrement: The input Op1 is decremented by one and the result appears at
Out.

2.2 Logical Operations

• AND: The bitwise AND operation of Op1 and Op2 is done and result is
shown at Out.

7

• OR: The bitwise OR operation of Op1 and Op2 is done and result is shown
at Out.

• NOT: The bits of Op1 is being inverted and the result appears at Out.

• Exclusive-OR: The bitwise XOR operation of Op1 and Op2 is done and result
is shown at Out.

• Exclusive-NOR: The bitwise XNOR operation of Op1 and Op2 is done and
result is shown at Out.

• NAND: The bitwise NAND operation is performed between Op1 and Op2
for which result appears at Out.

• NOR: The bitwise NOR operation is performed between Op1 and Op2 for
which result appears at Out.

2.3 Shifting Operations

ALU shift activities cause operand Op1 or Op2 to move left or right (contingent
upon the opcode) and the moved operand shows up at Out. In all single-cycle
shift tasks, the bit moved out of the operand shows up on carry-out; the worth of
the bit moved into the operand relies upon the kind of shift.

• Arithmetic shift: The operand is treated as a two’s complement integer,
meaning that the most significant bit is a "sign" bit and is preserved. The
arithmetic shift operation can be used in multiplication as well as division
algorithms.

• Logical shift: A logic zero is shifted into the operand. This is used to shift
unsigned integers. The logical shift operation can be used only in multipli-
cation algorithms.

8

2.4 8-bit ALU Implementation

The block diagram of implemented ALU is shown in figure 2.2. In this design, the
Op1 and Op2 represents the 8-bit inputs which are first given to the registers along
with the clock signal. Further, it output of the registers acts as the input to the
ALU circuit which are given with the control signals that selects the operation of
the ALU that is to be performed. The implemented ALU is of 8-bits and performs
16 operations, among which the arithmetic operations are addition, subtraction,
multiplication, increment and decrement, and the bitwise logical operations are
AND, OR, NOT, NAND, NOR, XOR, XNOR. Shifting operations performed are
arithmetic and logical, left and right shift operations. For logical operations, dif-
ferent gates are implemented. For the addition operation, the Carry-Look Ahead
adder is implemented and for the multiplication operation, the Modified Booth’s
algorithm is implemented because these are efficient. Control Unit implemented
gives the instructions to the ALU and ALU performs the corresponding operation.

Figure 2.2: ALU Block Diagram

9

2.4.1 Carry Look-Ahead adder

Carry Look-Ahead adder speeds up by decreasing the measure of time needed to
decide the carry. It can be compared with the simpler adder that is Ripple Carry
Adder (RCA) which is usually slower. For this, the carry bit is determined along
with the sum bit and each stage should stand by until the previous carry bit is
determined. The Carry Look-Ahead adder computes at least one carry bit prior
to adding, which reduces the waiting time for determining the result of the larger
value of the adder. It reduces propagation delay by introducing more complex
hardware. In this design, the ripple carry design is appropriately converted to
simplify the carry logic on the fixed bit group of the adder to a two-level logic. In
this design, two 4-bit Carry Look-Ahead adders are used to implement an 8-bit
Carry Look-Ahead adder. By considering full adder circuit, two factors can be
characterized as carry generate Gi and carry propogate Pi.

Pi = Ai ⊕ Bi (2.1)

Gi = AiBi (2.2)

The sum output and the carry output are given as follows,

Si = Pi ⊕ Ci (2.3)

Ci+1 = Gi + PiCi (2.4)

Where the carry generate is indicated as Gi which produces the carry when
both the inputs i.e. Ai, Bi are one regardless of the input carry. The carry propa-
gate is gives as Pi which is associated with the carry propagation from Ci to Ci+1.
Figure 2 shows the circuit diagram of 4-bit carry look-ahead generator. The out-
put of the carry in each stage can be given by the following equations.

C1 = G0 + P0Ci (2.5)

C2 = G1 + P1G0 + P1P0Ci (2.6)

C3 = G2 + P2G1 + P2P1G0 + P2P1P0Ci (2.7)

C4 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0Ci (2.8)

From the given equations (ref:geeksforgeeks.org), it can be seen that C4 does
not need to wait for C2 and C3 for its propagation. C4 can be propagated at the
same time when C2 and C3 propagates which eventually reduces delay of the

10

circuit. Where Gi is a carry generate which produces the carry when both Ai, Bi

are one regardless of the input carry. Pi is a carry propagate and it is associate with
the propagation of carry from Ci to Ci+1. Figure 2.3 shows the circuit diagram of
carry look-ahead generator.

Figure 2.3: Carry Look-Ahead Generator

Some of the advantages of Carry look-ahead adder are, it gives the fastest logic
for addition and hence the propagation delay can be reduced. It has some of
the disadvantages like the number of variables increases and hence the circuit
becomes complicated. Also it involves more amount of hardware which results
in the increase of cost.

2.4.2 Modified Booth’s algorithm

The algorithm for Booth multiplication comprises of three significant steps as dis-
played in the structure of the diagram for the algorithm. The algorithm gener-
ally incorporates reducing the partial products, generation of the partial product
knows as recoding process and the addition that gives the final product of multi-
plication process. The given below figure 2.4 shows the flow diagram of Modified
Booth’s algorithm.

11

Figure 2.4: Modified Booth’s Algorithm

The high-speed multiplication process can be carried out with Modified Booth’s
algorithm. We can reduce the quantity of products by half. This modified booth
multiplier’s computation time and the logarithm of the word length of operands
are proportional to each other. The implemented multiplier is of 4-bits. The radix-
4 Booth algorithm which is utilized here speeds up the multiplier and diminishes
the space of the circuit. In this calculation, every other column is multiplied by
0 or +1 or +2 or - 1 or - 2, rather than moving and amassing every column of the
Booth multiplier. Therefore, the use of this Booth algorithm can reduce number
of the partial product by half. Depending on the multiplier bits, the encoding
process of the multiplicand is performed by the base 4 Booth encoder. The over-
lapping process is used to compare three bits at a time. The grouping of the bits
starts with the least significant bit. In the least significant bit, the first block uses
only two bits of the Booth multiplier, and zero is assumed to be the third bit.

The table 2.1 shows functional operations of the radix-4 Booth encoder that
comprises of eight distinct sorts of states. The results or multiplication of multi-
plicand with 0, 1, 2, - 1 and - 2 are successively acquired during these eight states.

12

Table 2.1: Booth Recoding Table

Multiplier bits block Recoded 1-bit pair 2 bit booth
i+1 i i-1 i+1 i Multiplier

Value
Partial
Product

0 0 0 0 0 0 Mx0
0 0 1 0 1 1 Mx1
0 1 0 1 -1 1 Mx1
0 1 1 1 0 2 Mx2
1 0 0 -1 0 -2 Mx-2
1 0 1 -1 1 -1 Mx-1
1 1 0 0 -1 -1 Mx-1
1 1 1 0 0 0 Mx0

The major steps for the radix-4 booth algorithm are given below:

• The first position sign bit is extended if required. It is done to ensure that
the total number of bits is even.

• Then a zero is added to the right of the least significant bit of the multiplier.

• After the above steps, each partial product will 0, +1, -1, +2 or -2, according
to the value of the vector.

13

CHAPTER 3

RTL to GDSII flow

Design streams are the express blend of electronic design automation tools to
achieve the plan of an integrated circuit. Moore’s law has driven the whole IC exe-
cution from RTL to GDSII configuration streams from which one basically utilizes
independent routing, synthesis and placement algorithms to a coordinated devel-
opment and examination streams for design conclusion. The RTL to GDSII stream
went through critical changes from 1980 through 2005. The ongoing scaling of
CMOS advancements fundamentally changed the targets of the different design
steps. The absence of good indicators for delay has prompted huge changes in late
design streams. New scaling difficulties, for example, reliability, variability and
leakage power will keep on requiring critical changes to the design closure mea-
sure later on. Numerous elements depict what drove the design stream from a
bunch of discrete design steps to a completely integrated methodology and what
further changes are coming to address the most recent difficulties.

The design process can be divided into two parts, one is the front end design
process, the other is the back-end design process. In VLSI, physical design is a
process in which the structural level netlist moving from the front-end design pro-
cess transforms to the back-end design process of the structural hierarchy netlist
to a physical layout database, which consists of a Geometric design information
for all physical layers used for interconnection. The front-end process defines the
solution to a given problem and design of the circuit at the RTL level. The steps
involved here are Block-level architecture design, RTL coding and its Functional
Verification. The back-end process involves all other steps of integration to the
format of the GDS file. Figure 3.1 shows the complete flowchart from RTL to
GDSII. The following are the steps for RTL to GDSII flow:

14

Figure 3.1: RTL to GDSII flow

15

3.1 Architechture

At this level, functions, features, and the specifications of the chip are in accor-
dance with claim. Therefore, the customer’s request plays an important role in
determining how the chip works. So this is the first step to gather requirements,
and accordingly it is first designed at the block level.

3.2 RTL level

According to chip specifications, RTL code of the ones used for block-level design
is written in Verilog HDL and the complete verification is done. This is called
Behavior simulation.

Figure 3.2: RTL level

3.3 Synthesis

In this process, once the RTL code and its testbench is generated it is converted
into a gate-level netlist using a logical synthesis tool. It generally helps to produce
the netlist that consists the description and interconnections of logic cells. Logic
synthesis tools ensures that the netlist meets the specifications like timing, area

16

and power.
The goals of the synthesis process are:

• To get a gate level netlist.

• Inserting clock gates.

• Logic optimization.

• Inserting DFT logic.

• Logic equivalence between RTL and netlist should be maintained.

3.4 STA

Static timing analysis is one the techniques that is used to verify the timing con-
strains of a digital design. It verifies the digital design in terms of timing. It is
a method which is used for the validation of timing performance of a design. It
is done by checking all possible paths for timing violations. STA splits a design
down into different timing paths, then calculates the signal propagation delay for
each path and checks for violations of timing constraints inside the design and at
the input/output interface.

3.5 Physical Design

Different steps are involved here, such as floor plan, power plan, placement, clock
tree synthesis, routing. It is at the layout level. The floor plan involves arrange-
ment of the different blocks on the chip. During the placement process, the posi-
tion of the cell in the block is decided. The routing process makes the connection
between the cell and the block. The concept behind the clock tree synthesis is to
ensure that the clock arrives every flip-flop present in the chip. After this process,
Physical verification is done to ensure that the designed layout work as it was
intended or not. After the physical design process, the DEF (Design Exchange
Format) file of the layout is generated. This DEF is used and it is read by the tool
along with the LEF (Library Exchange Format) files. From this the optimization
of the parameters has been done.

17

Figure 3.3: Physical design flow

3.6 GDSII

After verification, the GDS file of the design is formed. It is in binary file format
that represents geometric shapes, text labels and others information about the
layout of the chip that is to be manufactured.

18

CHAPTER 4

FPGA Implementation

Field Programmable Gate Arrays (FPGAs) are semiconductor gadgets that are
based around a lattice of configurable logic blocks (CLBs) associated through
programmable interconnects. FPGAs can be reprogrammed to wanted applica-
tion or usefulness prerequisites subsequent to assembling. This component rec-
ognizes FPGAs from Application Specific Integrated Circuits (ASICs), which are
specially made for specific tasks of design. Although once time programmable
(OTP) FPGAs are accessible, the prevailing sorts are SRAM based which can be
reprogrammed as the plan develops.

ASIC and FPGAs have different incentives, and they should be carefully as-
sessed prior to picking any one over the other. Data proliferates that analyzes the
two innovations. While FPGAs used to be chosen for lower speed/complexity/volume
plans previously, the present FPGAs effectively push the 500 MHz execution bound-
ary. With uncommon logic density increases and a large group of different high-
lights, like embedded processors, clocking, DSP blocks, etc. FPGAs are a convinc-
ing suggestion to design any sort of plan.

4.1 FPGA Architechture

A fundamental FPGA involves a huge number of key parts called configurable
logic blocks (CLBs) enveloped by an arrangement of programmable interconnects,
called a fabric, that courses hails between CLBs. Information or Output (I/O)
blocks interface between the FPGA and outside devices. Given figure 4.1 shows
the fundamental architechture of FPGA.

19

Figure 4.1: Basic FPGA Architechture (Image source:elprocus.com)

An individual CLB contains a couple of logic blocks. A lookup table (LUT) is a
brand name feature of a FPGA. A LUT stores a predefined rundown of logic out-
put for any blend of data sources: LUTs with four to six data bits generally used.
Standard reasonable capacities like full adders (FAs), flip-flops and multiplexers
(mux) are furthermore ordinary.

Figure 4.2: A Simplified CLB (Image source:Wikipedia)

20

The number and plan of segments in the CLB changes by gadget; the improved
model is shown in figure 4.2. It contains two three-input LUTs as shown by (1), a
full adder indicated by (3) and a D-type flip-flop as given as (5). In addition to a
standard multiplexer indicated by (2) and two other multiplexers that are (4) and
(6) are arranged during FPGA programming. This improved model of CLB has
two methods of activity. In normal mode, the LUTs are joined with Multiplexer
(2) to frame a four-input LUT; in arithmetic mode, the LUT yields are taken care of
as contributions to the full adder along with a convey contribution from another
CLB. Multiplexer (4) chooses between the full adder yield or the LUT yield. Mul-
tiplexer (6) decides if the activity is offbeat or synchronized to the FPGA clock by
means of the D flip-flop. Current-age FPGAs incorporate more perplexing CLBs
equipped for various activities with a single block; CLBs can consolidate for more
mind boggling tasks like multipliers, registers, counters and surprisingly digital
signal processing (DSP) capacities.

4.2 NEXYS 4 DDR FPGA board

The Nexys 4 DDR board is a completed, ready to-use modernized circuit im-
provement stage subject to the latest Artix-7 Field Programmable Gate Array
(FPGA) from Xilinx. With its tremendous, high-limit FPGA (Xilinx part number
XC7A100T-1CSG324C), liberal external memories, and grouping of USB, Ether-
net, and various ports, the Nexys4 DDR can have plans going from the combina-
tional circuits to fantastic introduced processors. A couple of innate peripherals,
including an accelerometer, temperature sensor, MEMs mechanized mouthpiece,
a speaker enhancer, and a couple of I/O devices grant the Nexys 4 DDR to be
used for a wide extent of plans without requiring some different segments. The
board used for implementation is shown in figure 4.3.

21

Figure 4.3: NEXYS 4 DDR FPGA board

Verilog HDL was utilized for coding of the design which was further compiled
and simulated by utilizing Xilinx ISE 14.7. After that point, it was stacked into the
FPGA board. The two 4-bit inputs, A and B were given to the FPGA to perform
the 4-bit ALU operations. In FPGA implementation the inputs of the ALU were
given to the switches of the FPGA board and the output was shown by LED’s. Ac-
cording to the select lines that were given as input to the FPGA, the corresponding
output can be observed by the LED’s.

Steps for the implementation of ALU on NEXYS 4 DDR FPGA board are as
follows:

• The first step was to compile the program, then the program was simulated
and synthesized by running simulation.

• The next step was to load the program in the FPGA by using the cable and
the inputs and outputs were mapped according to the code.

• In the final step, the operations were tested by giving inputs to the switches

22

of FPGA board.

The hardware realization was carried out by using the FPGA kit. Further, the
results were verified with the simulated waveforms.

23

CHAPTER 5

Results and Comparisons

In this chapter, we will discuss about the simulation results, results of area, delay
and power in 45nm technology, 180nm trechnology and of FPGA implemenata-
tion. Also, we will discuss about the synthesized RTL schematic which is obtained
by using Genus tool from Cadence and about the layout of the design which is
done by using Innovus tool from Cadence. At the end, the comparison is done
between the results obtained from 45nm technology node and 180nm technology
node. Also, the comparison is done with the existing work in terms of delay and
power.

The simulations were performed using isim tool and Xilinx ISE tool to com-
plete RTL level coding in Verilog HDL. The simulation results for ALU are shown
in the following figures. Figure 5.1 shows the performed logical operations, fig-
ure 5.2 shows the results of shifting operations and figure 5.3 shows the results
of arithmetic operations. Two inputs are given here, and an output is selected
according to the instructions given by the control unit. The given two inputs are
15 and 3, the operation is performed according to the control signals given to the
ALU. For multiplication operations, the inputs are -5 and 4. Once the RTL-level
code is written, it is converted into a gate-level netlist through a synthesis process.
The synthesized RTL schematic is shown in figure 5.4. Op1 and Op2 shown in fig-
ure are the 8-bit inputs that are given. Op3 and Op4 represents the 4-bit inputs
for the multiplier. Op represents the opcode which is a 4-bit input that selects the
operation for the ALU and clk is the clock given as the input. The 8-bit output is
represented as Out in the figure. This process was done using the Genus tool and
the area, power consumption and delay were optimized. After that, Innovus tool
was used to complete the physical design process. The layout is shown in figure
5.5. In the figure Vdd and Vss lines are shown. Also, standard cells and connec-
tion lines has been represented. The technology node used for implementation is
the 45nm technology node 180nm technology node. Further, results of both the

24

implementation has been compared.

5.1 Logical Operation Results

The given figure 5.1 shows the results of the logical operations performed. The
operations performed here are AND, OR, NOT, XOR, XNOR, NAND and NOR.
It can be observed from the figure that two inputs are given and according to the
opcode the corresponding operation is shown at the output.

Figure 5.1: Logical Operations

5.2 Shifting Operation Results

The given figure 5.2 shows the results of the shifting operations performed. The
operations performed for this are Logical Shift Left (LSL), Logical Shift Right
(LSR), Arithmetic Shift Left (ASL), Arithmetic Shift Right (ASR). These operations
are performed for input 1 and according to the opcode the corresponding opera-
tion is performed. The main difference between arithmetic shift and logical shift

25

is arithmetic shift can perform multiplication as well as division whereas logical
shift can only perform multiplication.

Figure 5.2: Shifting Operations

5.3 Arithmetic Operation Results

The given figure 5.3 shows the results of the arithmetic operations performed. The
operations performed here are addition, subtraction, multiplication, increment
and decrement. It can be observed that the inputs given here are 15 and 3 for
which the results of addition, subtraction, increment and decrement are selected
according to the opcode. For the multiplication operation the inputs given are -5
and 4 and the corresponding result is -20.

26

Figure 5.3: Arithmetic Operations

5.4 RTL schematic and Layout

The figure 5.4 shows the synthesized RTL schematic of the circuit. This is per-
formed by using Genus tool. All the inputs and outputs are indicated and can
be observed. The figure 5.5 shows the layout in 45nm technology node which is
performed by using Innovus tool. The Vdd and Vss lines are shown as well as
the standard cells and connection lines are indicated. Further, the optimization of
area, delay and power is done by using Genus tool.

27

Figure 5.4: Synthesized RTL Schematic

Figure 5.5: Layout in 45nm technology

28

5.5 Comparison between 45nm and 180nm

The below table 5.1 shows the comparison results in terms of area, delay and
power and the improvement by using 45 nm technology. It can be observed from
the results that the 45nm technology gives better results in terms of area, delay
and power. Also, the comparison is done with the existing work in terms of de-
lay and power. The comparison shows that the implemented design gives better
results.

Table 5.1: Comparison Table

Technology Parameters measured
Node Area (µm) Delay (ps) Power

(µW)
ALU in 45nm 1493.31 478 54.75
ALU in 180nm 14356.54 842 57.37
Improvement
(%)

89.59 43.23 4.56

FPGA Imple-
mentation

- 2146 88000

8-bit ALU [16] - - 560.99
8-bit ALU [17] - 5520 -

29

CHAPTER 6

Conclusion and Future work

The complete implementation of 8-bit ALU has been successfully done from RTL
level to layout level. The ALU was implemented in 45nm technology and 180nm
technology by using Cadence tools. The optimization of design was done in terms
of area, delay and power. Further, the design implemented in 45nm technology
has been compared with the design implemented in 180nm technology and the
observation shows that 45nm technology gives better results in terms of area, de-
lay and power as compared to 180nm technology. The improved results shows
that area is reduced by 89.59%, delay is reduced by 43.23% and power is reduced
by 4.56%. Also, the 4-bit ALU is implemented on NEXYS 4 DDR FPGA board.
The results were compared with simulated waveforms. The delay observed for
this implementation was 2146ps and power consumption was 88000µW. The re-
sults of 8-bit ALU has also been compared with the results of the previous work
in terms of delay and power and from the observation the current implemented
design gives better output as shown in the table II.

The implementation of the design by using RTL to GDSII flow can be extended to
32-bits. Also, it can extended on the FPGA board.

30

References

[1] A. Vinotha and N. Radha, "Design And Implementation Of Reversible Logic
Alu With 4 Operations", International Conference on Electrical, Information
and Communication Technologies(ICEICT), 2017.

[2] K. Bikshalu and P. Soma, "Design and Simulation of 16 Bit Arithmetic Unit
using Gating Techniques in Cadence 45nm Technology", International Jour-
nal of Engineering and Advanced Technology (IJEAT),. ISSN: 2249 – 8958,
Volume-6 Issue-3, 2017.

[3] M. S. Kumar, S. Inthiyaz, M. A. Babu, B. Teja, S. J. Ahmed, T. S. Harika and
K. Bhaskar, "Two speed Radix-2 Booth Multiplier using verilog", Journal of
Critical Reviews, Vol 7, Issue 4, 2020.

[4] A.K. Panigrahi, S. Patra, M. Agarwal and S. Satapathy, "Design and Imple-
mentation of a high speed 4bit ALU using BASYS3 FPGA Board", Innova-
tions in Power and Advanced Computing Technologies (i-PACT), 2019.

[5] U. Mandal, R. Banerjee and R. Mishra, "A comparative study of Arithmetic
Multipliers", 2nd International Conference on Electronics, Materials Engi-
neering and Nano-Technology (IEMENTech), 2018.

[6] B. Koyada, N. Meghana, M. O. Jaleel and P. R. Jeripotula, "A compartive
study on adders", International Conference on Wireless Communications,
Signal Processing and Networking (WiSPNET), 2017.

[7] U. Lakadiwala1, S. Hirapara, R. Ramani and N. Chaudhary, "Implementa-
tion of ALU on FPGA", International Research Journal of Engineering and
Technology (IRJET), Vol 03 , Apr-2016.

[8] M. Kumar, S. K. Jha and R. Sharma, "A Case Study: Design of 16 bit Arith-
metic and Logical unit using Xillinx 14.7 and Implementation on FPGA
Board", International Journal of Engineering Technology Science and Re-
search(IJETSR) Volume 4, Issue 9, Sep-2017.

31

[9] N. Telagam and N. Kandasami, "Low Power Delay Product 8-bit ALU Design
using Decoder and Data Selector", Majlesi Journal of Electrical Engineering,
2018.

[10]] M. Kantawala, "Design and implementation of 8-bit and 16-bit ALU us-
ing Verilog language", International Journal of Engineering Applied Sciences
and Technology, vol.2, pp. 30- 34, June-2018.

[11] B. Lambda and A. sharma, "A review paper on different multipliers based
on their different performance parameters", 2nd International Conference on
Inventive Systems and Control (ICISC), 2018.

[12] J. Kalia and V. Mittal, "Int. Journal of Engineering Research and Application",
ISSN : 2248-9622, Vol. 7, Issue 5, pp.60-63(Part-4), May-2017.

[13] R. Garg, M. Kaur and D. Bansal, "Review Paper Of Modified Booth Multiplier
With Different Methods", IJEDR, Volume 6, Issue 2, ISSN: 2321-9939, 2018.

[14] G. Madhukar, A. L. Kulkarni and J. S. Baligar, "ASIC Implementation of High
Speed and Low Power ALU", International Journal of Engineering Research
and Technology (IJERT), Vol 08 Issue 07, July-2019.

[15] B. Sakthivel, K. Maheshwari, J. Manojprabakar, S.Nandhini and
A.Saravanapriya, "Implementation of Booth Multiplier and Modified
Booth Multiplier", International Journal of Recent Trends in Engineer-
ing and Research (IJRTER) Conference on Electronics, Information and
Communication Systems (CELICS), 2017.

[16] S. Hiremath and D. Koppad, "Alu design using low power GDI stan-
dard cells", International Journal of Electrical Engineering and Technology
(IJEET), Volume 11, Issue 6, pp. 94-100, August-2020.

[17] A. Deeptha, D. Muthanna, M. Dhrithi, M. Pratiksha and B. S. Kariyappa,
"Design and Optimization of 8 bit ALU using Reversible Logic", IEEE Inter-
national Conference On Recent Trends In Electronics Information Communi-
cation Technology, May-2016.

[18] G. C. Ajay Kumar, K. N. Subrahmanyu, S. Ammikkallingal and S. A. Polisetti,
"Physical Design, Power and Area Optimization of High Frequency Block
at Smaller Technology Node ", 4th International Conference on Recent
Trends on Electronics, Information, Communication and Technology (RTE-
ICT), May-2019.

32

[19] G. S. Yuvashree and S. Sumanth, "A 8 Bit ALU Design using Cadence", Inter-
national Journal for Research in Applied Science and Engineering Technol-
ogy (IJRASET), ISSN: 2321-9653, Volume 8, Issue 8, Aug-2020.

[20] B. N. Vegha and V. Prakash, “Design and Implementation of 4-Bit ALU for
Low-Power using Adiabatic Logic based on FINFET,” International Journal
of Engineering Research and Technology (IJERT), Vol. 9 Issue 07, July-2020.

[21] J. Kamatam and K. Gajula, ”Design of Array Multiplier using Mux Based
Full Adder,” International Journal of Engineering Research and Technology
(IJERT), Vol. 6 Issue 05, May - 2017.

[22] J. R. Shinde and S. J. Shinde, ”An Optimization Design Strategy for Arith-
metic Logic Unit,” Universal Journal of Electrical and Electronic Engineering
6(1): 1-13, 2019.

[23] S. Puranmath, T.M. Manu, A. Kori, S, Meti, “Digital Library creation using
standard cells implemented using GPDK 180nm technology,” International
Journal of Computer Applications, National Conference on Electronics and
Communication, 2015.

[24] V. Sreehari, M.B. Srinivas, “Design of Optimized Arithmatic circuits for Mul-
tiplier Realization,” IEEE Asia Pacific Conference on Postgraduate Research
in Microelectronics and Electronics, December 2013.

[25] T.S. Monikashree, S. Usharani, Dr. J.S. Baligar, “ Design and implementation
of full subtractor using CMOS 180nm technology,”International Journal of
Science, Engineering and Technology Research, vol.3, May 2014.

[26] K. S. Roy, K. Abhiram, M. A. Sumanth, J. Jaishankar, P. Abhishek, B. N. Prab-
hat, L.G.Teja. “Development of Graphical User Interface for Open Source
VLSI Digital Synthesis Tool Qflow,” International Journal of Engineering and
Technology, 2018.

[27] A. Mishra, M. Kumar. “Design of a Low Power Dynamic Comparator in
180nm CMOS technology,” International Conference on Advances in Com-
puting, Communication Control and Computing, 2018.

[28] M. Mukhedkar, W.B. Pandurang. “A 180nm Efficient Low Power and Op-
timized Area ALU design usingGate Diffusion Input Technique,” Interna-
tional Conference on Data Management, Analytics and Innovation, IEEE,
2017.

33

	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	Related Work
	Motivation
	Thesis Outline

	Arithmetic-Logic Unit
	Arithmetic Operations
	Logical Operations
	Shifting Operations
	8-bit ALU Implementation
	Carry Look-Ahead adder
	Modified Booth's algorithm

	RTL to GDSII flow
	Architechture
	RTL level
	Synthesis
	STA
	Physical Design
	GDSII

	FPGA Implementation
	FPGA Architechture
	NEXYS 4 DDR FPGA board

	Results and Comparisons
	Logical Operation Results
	Shifting Operation Results
	Arithmetic Operation Results
	RTL schematic and Layout
	Comparison between 45nm and 180nm

	Conclusion and Future work
	References

