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Abstract

Voice Assistants (VAs) are nowadays an integral part of human’s life. The low re-
source applications of VAs, such as regional languages, children speech, medical
conversation, etc are the key challenges faced during development of these VAs.
On a broader perspective, VAs consist of three parts, namely, Automatic Speech
Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS)
model. This thesis is focused on one part of them, i.e., ASR. In particular, opti-
mization of low resource ASR is targeted with the application of children’s speech.
Initially, a data augmentation technique was proposed to improve the perfor-
mance of isolated hybrid DNN-HMM ASR for children’s speech. Hence, we
have used CycleGAN-based augmentation technique, where children-to-children
voice conversion is performed. Here, for conversion of characteristics, the speech
signals were categorized into two classes based on the fundamental frequency
threshold of speech. In this work, a detailed experimental analysis of various aug-
mentation, such as SpecAugment, speed perturbation, and volume perturbation
are done w.r.t. to ASR.

Further, to optimize low resource ASR, the self-supervised learning, i.e., wav2vec
2.0 have been explored. It is a semi-supervised approach, where pre-training
is performed with unlabelled data and then fine-tuned with labelled data. In
addition, the fusion of Noisy Student Teacher (NST) learning is done with self-
supervised learning techniques. The key achievement of this work was efficient
use of unlabelled data and even though the process involves iterative training, re-
dundant training was negligible. The filtering of pseudo labelled data was done
before utilizing it for fine-tuning. After Acoustic Model (AM) decoding, the Lan-
guage Model (LM) was also used to optimize the performance.

Additional work was also done in the direction of replay Spoofed Speech De-
tection (SSD). In this work, the significance of Delay and Sum (DAS) beamformer
was investigated over State-of-the-Art (SoTA) Minimum Variance Distortionless
Response (MVDR) beamforming technique for replay SSD.
Keywords: Automatic Speech Recognition, Data Augmentation, Self Supervised
Learning, Noisy Student Teacher Learning, Replay Spoof Speech Detection.
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CHAPTER 1

Introduction

1.1 Motivation

Recently, the most popular technological developments are Voice Assistants (VAs)
and conversational user edges. The VAs are rapidly advancing in various secu-
rity and household services, such as banking, healthcare, personal usage, etc. Ad-
vanced Artificial Intelligence (AI) and machine learning (ML) techniques are used
to create VA systems and apps. Users are interacting with digital assistants, which
implies that the AI is installing more advanced algorithms to learn from the avail-
able data. Hence, the goal is to develop the technology, which can better forecast
the user’s demands. To that effect, the VAs are designed such that, it can include
cognitive technologies that enable digital support for increased comprehension
and execution of multistep requests. Google Now, Microsoft’s Cortana, Amazon’s
Alexa, Apple’s Siri, and Google Assistance are the most popular VAs. In recent
years, the context-based understanding has been a breakthrough in VAs technol-
ogy. Hence, it is now becoming a crucial component in people’s lives, and they
want individualized experiences when dealing with technologies like this. Voice
technology, in particular, relies heavily on personalization along with security.
Breaking down the elements of a VAs, it is consisting of following task

• Automatic Speech Recognition (ASR)

• Natural Language Processing (NLP)

• Desired application logic

• Text-To-Speech (TTS)

In this thesis work, few elements of VAs, such as ASR and security measures
have been focused. The goal of ASR, has primarily been to reduce errors while
decoding voice inputs and hence, this is what caused systems like Siri, Alexa, and

1



Figure 1.1: Functional flow diagram of voice assistants.

Google Assistant to become so mainstream and commercially successful speech
recognition has made its way into our daily lifestyle, due to availability of these
VAs. The ASR ought to be facilitated in more languages and for a wider range
of activities. Since ASR requires a huge amount of data to operate effectively,
and some of it has yet to be captured for certain languages and topics. VAs are
typically thought of as independent speakers to which users speak to perform
simple activities, such as searching the Internet. VAs are popular because of their
ease of use and simplicity, however it’s important to note that they’re connected
to the rest of your digital environment. The fact that these devices have access to
a multitude of accounts and passwords makes them difficult to secure in terms of
cybersecurity. With so many diverse situations in which voice assistants are used,
it’s critical to remain up to speed on their numerous vulnerabilities and develop
a thorough plan for their use in a remote office or shared workspace.

The self-supervised learning is a robust solution for low resource ASR. The Fig.
1.2 shows the block diagram of SSL-based ASR and supervised ASR. Where SSL
ASR is a two stage process, i.e., first pre-training with unlabelled data and then
fine-tuning with labelled data. However, Supervised ASR only performs learning
with labelled data and also there is a shallow fusion of all three models namely,
acoustic model, lexicon model, and language model.

2



Figure 1.2: Self-supervised ASR vs. Supervised ASR
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1.2 Key Research Challenges

ASR is a rapidly growing field, where ASR systems have reached to some re-
liable system deployment. Supervised ASR gives reliable performance, how-
ever, requires extensive information pertaining to the transcribed data. For ex-
ample, combination of Gaussian Mixture Model (GMM) and Hidden Markov
Model (HMM), and combination of Deep Neural Network (DNN) and HMM-
based ASR models requires transcription, pronunciation dictionary, and language
model (LM), which needs in-depth knowledge and manual efforts to create high
quality pronunciation dictionary and LM for all the languages [5]. This constraint
was further overcome with the discovery of attention mechanism [8] and Connec-
tionist Temporal Classification (CTC) loss [35, 83], which resulted into an end-to-
end (E2E) ASR system. The E2E approach doesn’t require pronunciation dictio-
nary and LM, although LM can be added to improve the results. Whereas, E2E
approach requires an extensive amount of high quality transcribed data, which is
unfeasible for all possible circumstances, such as different languages or age group
of speakers. Thus, researchers aims to create a low resource ASR system. To that
effect, self-supervised learning (SSL) were introduced, such as the state-of-the-art
wav2vec 2.0 introduced by Facebook AI [7]. In this SSL technique, a significant
amount of training is executed with unlabelled audio data and then the model is
further fine-tuned with a small amount of transcribed data.

A significant amount of work is reported in the literature for ASR of adult
speech, more so for English language. Whereas for children speech, ASR sys-
tem doesn’t perform equally well [60]. There is a significant difference between
children and adult speech. Adult speech consist of dialect, tempo, environment
variations, whereas children speech is naive. As children are intellectually and
physically growing, they have a lot of variability in understanding and expres-
sion of speech. Acoustic variability of children’s speech includes shift in spec-
tral content and formant frequencies (i.e., higher formants compared to the adult
speech), primarily due to lesser size and length of the vocal tract system [40, 69].
All these factors decreases the performance of children ASR. Whereas, children
are also major users of assistive speech technology. With the development of vir-
tual learning and interactive courses for children, it has become need of the era to
make devices intelligible to children speech [47].

Furthermore, the VAs are highly vulnerable to various spoofing attacks, such
as hidden command, self-triggered, Voice Conversion (VC), Speech Synthesis (SS),
and replay attacks [86]. In particular, due to the availability of low cost and high

4



quality microphones and playback devices, replay attacks are easy to execute but
hard to detect.

1.3 Contributions From The Thesis

• The main contribution of the thesis is for development of a low resource ASR
system. Initially, considering SoTA ASR supervised technique, i.e., DNN-
HMM ASR system . The performance of supervised ASR was improved by
applying CycleGAN-based data augmentation. A detail study of the effect
of several augmentation methods is also presented in this part of the thesis.

• Furthermore, working on the challenge of building an ASR for children
speech a self-supervised technique, i.e., wav2vec2.0 was used. The perfor-
mance of this baseline was further improved using unlabelled data and fus-
ing the intuition of NST learning.

• Additionally, some work on developing counter-measures to prevent VA’s
from replay attacks. In this work, the significance of DAS beamformer was
discovered over MVDR for application of replay spoof speech detection.

• Along with results, a detailed discussion on implementation and setup of
various frameworks have been explained.

1.4 Organization of The Thesis

Organization of the thesis work is pictorially represented in Fig. 1.3.

Chapter 2

This chapter discusses the detailed background and literature survey of ASR. In
particular, various approaches of ASR, along with the augmentation techniques,
are discussed. Furthermore, the difference between supervised and self-supervised
approach is shown. Thus, pros and cons of all approaches are discussed.

Chapter 3

This chapter explains the technical background of supervised ASR in-depth. In
particular, various approaches adopted for building ASR, such as hybrid DNN-
HMM, Connectionist Temporal Classification (CTC) , and encoder-decoder mod-
els are included along with the pros and cons of each approach.

5



Figure 1.3: Flowchart of the thesis.

Chapter 4

The discussion of various data augmentation techniques is done in this chapter.
Later, a CycleGAN-based data augmentation was introduced to improve perfor-
mance of hybrid DNN-HMM-based ASR system. Furthermore, the experimental
results of this work are discussed.

Chapter 5

This chapter includes a detailed study of wav2vec 2.0. Its key element, such as
Attention model, Transformer model, and its working is also discussed in detail.
This chapter will give an overall intuition of how a self-supervised deep learning
model works.

Chapter 6

In this chapter, we have discussed the key work done to improve the performance
of existing SSL ASR technique. In particular, the concept of NST is introduced,
and it’s fusion with the SSL architecture is proposed as key work to improve the
SSL speech representation.

6



Chapter 7

In this, an additional work is done for w.r.t. security analysis and voice biometric
safety of VA’s. Here, the work has targeted to develop countermeasures for Re-
play Spoofed Speech Detection (SSD). Here, various beamforming techniques are
explored to optimize the development of countermeasures.

Chapter 8

Finally, this chapter gives overall summary and conclusions drawn from the work
presented in this thesis. The limitations of present thesis work and potential fu-
ture research directions are also discussed in this chapter.

1.5 Chapter Summary

In this chapter, a brief introduction about VA’s is given, where discussion of its
utility and challenges was done. Further, key motivation and challenges for ASR
development are discussed. Additionally, various approaches have been dis-
cussed for implementation of ASR. While some discussion was done for approaches
to resolve the limitation of existing baseline. In the following chapter, a brief liter-
ature search that is, relevant to this chapter will be discussed.

7



CHAPTER 2

Literature Survey

2.1 Introduction

This chapter is presents a brief literature survey on ASR. In particular, state-of-the-
Art (SoTA) supervised hybrid DNN-HMM is discussed. Further, a brief survey of
various unsupervised and self-supervised approaches are done. The comparison
between supervised and self-supervised technique is presented, along with a final
survey on the work done till now for children ASR is presented. Such literature
search helps to position this thesis work into the history of the research problem.

2.2 Literature Survey for Automatic Speech Recogni-

tion (ASR)

The first successful conventional model of ASR was GMM-HMM ASR [9], which
was later on modified with hybrid model of DNN-HMM, where the generative
acoustic model is upgraded with discriminative acoustic hybrid-DNN model [9].
This modified hybrid DNN-HMM model is discussed in detail in Chapter 3. A
hybrid DNN-HMM model requires high quality resources such as phonetic dic-
tionary, language model, and speech transcription. It requires huge amount of
data, which makes it difficult to deploy in all possible languages. This resulted
in discovery of End-to-End ASR, here resources like LM and lexicon dictionary
were not required but requires huge amount of data to train the model, it is dis-
cussed in detail in next section. Due to limitation of availability of large amount of
data, self-supervised ASR techniques were introduced. In supervised ASR tech-
niques a complete one-to-one, from feature to phoneme mapping is done, after the
force alignment using HMM. While in self-supervised ASR, the entire training is
divided in two major parts, namely, pre-training and fine-tuning. In SSL, the pre-
training part has no labels for training and hence an approximate representation
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is created in the form of codebook via. vector quantization algorithms. Further,
in fine-tuning those learning are labelled through training on labelled data, it is
in detail discussed in Chapter 5. A literature survey of various SSL techniques is
presented in Table (2.1).

Paper Name Model Intuition

Benchmark
dev-clean / dev-other
/ test-clean / test-other

WER (%) [for libri]

DataSet / Comment

Hubert: How much
can a bad teacher

benefit asr pre-training? [30]
HuBERT

* BERT like masked prediction
is used for force learning of
both acoustic and language

models
* Multiple Bad Teacher in

pre- training

3.9 / 9.0 / 4.3 / 9.4

Pretrained :
960h Libri

Fine tuned :-
10h of Libri Light

The TAL system for
the INTERSPEECH2021

Shared Task on
Automatic Speech

Recognition for
Non-Native Children

Speech [89]

Wav2vec 2.0

* 11 Fold Data augmentation
using 7 techniques, listed as

{Speed perturbation,
Volume perturbation,

Reverberation simulation,
various noise augmentation,

Pitch augmentation }
* Language Model

{ 4 gram + Transformer }

WER = 23.5%
TLT Data-set

English & German
Non- native speech

Representation Learning
with Contrastive

Predictive Coding [78]

Speech
representation

based in
predictive

coding

* It extracts useful information
of high dimensional data,

creating a low dimensional
latent space representation

It discards low-level
information

wav2vec 2.0: A frame-
-work for self-supervised

learning of speech
representations [7]

Wav2vec 2.0

* Speech input is masked in
latent space representation

* This latent representation is
fed to a Transformer network

to build contextualized
representation and the model

is trained via contrastive
task where the true latent

is to be distinguished from
distractors.

(10h base model)
3.8 / 9.1 / 4.3 / 9.5

(100h large model)
1.9 / 4.0 / 2.0 / 4.0

Libri Speech

Unsupervised Speech [6]
Recognition

wav2vec-
Unsupervised

* Phonetic segmentation using
wav2vec 2.0 representation,

k-mean clustering and
generator

* 1 hot vector representation of
unlabelled text.

* GAN Training of real or fake

Timit PER = 11.3

Eng Libri Speech on
test-other WER = 5.6

Libri Speech

W2v-BERT: Combining
Contrastive Learning

and Masked Language
Modelling for Self-
Supervised Speech
Pre-Training [17]

Wav2vec+BERT

* Combines these to optimize
in an end to end fashion by
solving this self-supervised

task
->Contrastive Learning

->Masked Language
Modeling (MLM)

* Relies of iterative
re-clustering and

re-training process
* Conformer blocks for context

representation

Without LM
Pre- trained

only
XL: 1.5 / 2.9 / 1.5 / 2.9
XXL:1.5 / 2.7 / 1.5 / 2.8
Pre train+Self training
XL: 1.3 / 2.6 / 1.4 / 2.7

XXL: 1.4 / 2.4 / 1.4 / 2.5

Libri-Light
60k corpus

Pushing the limits of
semi-supervised

learning for
automatic speech
recognition [92]

Wav2vec +
conformer model

* Noisy student training using
Spec-Augment

Conformer XL with
no LM Fusion

1.5 / 3.1 / 1.6 / 3.0
Libri Speech

Table 2.1: Selected chronological progress of self-supervised learning techniques.
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Researchers aim to create a learning mechanism which works on the princi-
ple of learning of an infant, thus aims is to create an unsupervised approach of
learning a language. While, even children learn gradually with the help of the
activities and people around them, on other side infants also take years to grow
and learn. Thus, with this intuition, researchers discovered self-supervised learn-
ing techniques. The principal approach of self-supervised learning is to perform
the major part of learning in pre-training, where supervision of labelled data is
not required, in other words for pre-training labels are not required. This pre-
training creates an approximate quantized learning of target data. Several such
approaches are mentioned in Table (2.1). In this table, several approaches with
different application are mentioned. where wav2vec2.0 is recently the most robust
approach in self-supervised approach. While some BERT-based techniques are
also mentioned in the Table (2.1), in which masking is efficiently used for pre-
diction learning. In the end of the table Conformer architecture is used, which
improves the wav2vec 2.0 performance, with introduction of CNN in the architec-
ture of transformer.

2.3 End-to-End ASR

There have been several developments in End-to-End ASR overcoming the limi-
tation of hybrid DNN-HMM ASR, following are few of them :

• Requirement of phonetic alignment and state dependent HMM structure for
acoustic model. In other words, estimation of HMM and GMMs are required
before DNN training.

• It needs lexicon model which is handcrafted pronunciation dictionary that
may contain human error.

• Hybrid DNN-HMM ASR uses conditional independence assumption (HMM
alignment) between speech embeddings and output transcription. It is not
valid in real world, as phonetic context is strongly influenced by pronuncia-
tion of a phoneme.

• Integration of several components at decoding makes the whole process
complex.

To resolve all above-mentioned drawbacks, End-to-End ASR tries to reduce
the number of components into a single network using DNN. In addition, it tries
to estimate the distribution directly from the single network, p(Y|X) [27], This
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way network learns directly the mapping between acoustic signals and transcrip-
tion without explicitly introducing additional components in-between as intro-
duced in DNN-HMM ASR model. Joint training is used to train the entire net-
work. It uses a single objective function to train the network, which aids in con-
vergence to global optimum points. The use of soft alignments in end-to-end
networks improves the system’s efficiency by mapping every frame of speech to
every possible output with some probability [82]. A typical end-to-end ASR sys-
tem consists of two major components: an encoder and a decoder. The encoder
tries to figure out how to transfer input feature space to latent space representa-
tion. The decoder, on the other hand, seeks to learn the mapping between the en-
coder’s latent space representation and the output tokens (transcriptions). For the
end-to-end ASR model, two approaches are commonly used: (1) Connectionist
Temporal Classification (CTC) and (2) Attention network-based encoder-decoder
system. In the next sub-sections, both designs are briefly explained.

2.4 Literature Survey on Children ASR

Various types of automation technologies have brought increased demand on ef-
fective interaction between humans and machines. Recently, voice assistants or
intelligent personal assistants (IPAs) are widely used for communication, educa-
tion, consoles, etc. This has become possible due to advancements in automatic
speech recognition (ASR) systems. The users of ASR includes both children and
adults. Children use ASR for various purposes, such as remote learning, gam-
ing, entertainment, etc. However, the performance of ASR for children’s speech
was found to be worse than that for adults [60]. Due to increasing demand of
speech-based interfaces for children, it is important to address this challenge for
children’s ASR.

The differences between the acoustic patterns of adult and children speech
was studied in [40, 69]. Recent study suggest that, there are two main factors
responsible for the variability in the children’s speech [69]. First, temporal and
spectral variability present in the children speech are due to physiological and de-
velopmental variations. Second, variability in pronunciation for children speech
is due to lack of understanding about language and linguistic information, result-
ing into several disfluencies, such as pauses, fillers, repetitions, corrections, etc,
[40]. Acoustic variability includes shift in spectral content, therefore higher for-
mant frequencies (F1 to F4), and their transition. High variations in spectral con-
tent within a subject were found in [39], however, due to developmental changes,
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a large inter-speaker variability for children was also noted in [23]. Li et al. re-
ported that the performance of ASR degraded significantly, when the bandwidth
of speech is reduced from 4 kHz to 1.5 kHz [41]. One of the reasons for this was
higher (more than 60%) formants (F1, F2, and F3) for children due to much shorter
length of vocal tract system than that for the adults.

In the past, some research efforts have been carried out to develop acoustic
model (AM) for children’s ASR. Adapting acoustic models with Maximum Like-
lihood Linear Regression (MLLR) and Maximum A-Posteriori (MAP) gained sig-
nificant attention for this problem [70]. Shivakumar et al. investigated different
transfer learning adaptation techniques on large vocabulary continuous speech
recognition (LVCSR) for children [69]. Effectiveness of data augmentation by
artificially augmenting noise was investigated in [43]. Augmentation of adult
speech data with children has shown improvement in performance of children’s
ASR [64]. Multitask learning, transfer learning as well as self-supervised learning
framework employed for multilingual data adaptation showed its effectiveness
for children’s ASR [46, 90]. Generative adversarial networks (GANs) were also
used in the literature for data augmentation [68]. In particular, CycleGAN-based
data augmentation showed better improvement over the other techniques [68].

2.5 Chapter Summary

In this chapter, a review of evolution of ASR since the beginning was presented.
It initially mainly discussed the SoTA supervised ASR techniques such as GMM-
HMM and hybrid DNN-HMM. Later their limitation were addressed, in which
major limitation is requirement of resources. Thus, the concept of low resource
ASR was introduced, which created self-supervised ASR technique. Thus, in the
end, several SSL techniques for ASR were analysed. On that effect, the next chap-
ter is the background study of Supervised ASR.
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CHAPTER 3

Supervised ASR

3.1 Introduction

The most robust technique for deployment of supervised ASR is hybrid DNN-
HMM model. Thus, in this chapter, a brief discussion of hybrid DNN-HMM ASR
is done. Initially a brief discussion on application and end product of model,
i.e., posterior probability introduction was given. Then, the acoustic modelling
and language modelling process will be discussed. For acoustic modelling, first
feature extraction is performed to have a low dimensional speech representation.
Then this low dimensional speech representation is mapped with the output tran-
scription, before that force alignment of transcription w.r.t. audio using HMM is
performed. This results in the posterior probability distribution, which is actually
used in decoding.

3.2 ASR

A speech signal is converted into a sequence of words, characters, or phonemes by
an ASR system, and then the machine understands using NLP. To execute various
tasks, most voice assistants, such as Amazon Alexa, Apple Siri, Google Voice As-
sistant, and Cortana, employ ASR in conjunction with Text-to-Speech (TTS). Fig.
3.1 depicts the components of a typical ASR system. Using a feature extraction
block, the input voice stream is first converted into a sequence of acoustic feature
vectors. Let’s call the feature vector sequence, X = {x1, x2, ..., xT}, where T is the
number of frames. Following that, the decoder estimates the best word sequence,
Ŵ, using the ASR fundamental equation:

Ŵ = argmax
w

P(W/X). (3.1)
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Figure 3.1: Architecture of conventional ASR system. After [4].

Several generative models, including HMM is used for sequence modelling of
speech, which is variable in length [22]. The above eq. 3.2 can be rewritten as
follows using Bayesian decision theory [21]:

Ŵ = argmax
w

P(W)P(X/W)

P(X)
. (3.2)

Due to the fixed acoustic feature vector X, the equation can be approximated
as:

Ŵ = argmax
w

P(W)P(X/W). (3.3)

The probability of occurrence of an acoustic feature sequence X given that the
word detected is W is defined as P(X|W), and is estimated using an Acoustic
Model (AM) . Furthermore, P(W) is the prior probability calculated using a Lan-
guage Model (LM) for a specific word sequence W, and it is unaffected by the
acoustic features seen. The ASR task can be performed in two ways: hybrid DNN
HMM [12], in which the AM and LM are trained separately; whereas, the End-to-
End approach tries to learn a direct mapping between acoustic feature sequence
X, and word sequence W. The sections that follow briefly outline the various com-
ponents used in these approaches.
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3.3 Hybrid Deep Neural Network and Hidden Markov

Model (DNN-HMM) ASR

3.3.1 Acoustic Modelling (AM)

Acoustic models are one of the most important components of any ASR system,
and they must be resistant to changes in the environment, the speaker, and the
context. For each unit of speech, feature vectors are estimated in acoustic models.
The choice of these basic speech sound units is critical before training any acous-
tic model. For example, in a database with a vast vocabulary, words cannot be
used as the fundamental unit because this would need a huge number of training
utterances and thus, modelling acoustic data fluctuations would be difficult. Be-
fore deciding on basic speech sound units, two aspects should be considered: 1)
It should be generalizable, allowing any new term to be created from these basic
speech sound units, and 2) it should be correct. Phonemes are commonly used as
basic speech sound units in hybrid DNN-HMM ASR tasks because they are gen-
eralizable. Words, on the other hand, can be utilized as the basic sound unit of
a little vocabulary challenge. Phonemes are perceptually different basic units of
sound that can model articulatory gesture in any language, regardless of the con-
text. For the big vocabulary ASR job, tri-phones are used as the basic speech unit.
Since, speech recognition is context-dependent, the pronunciation of the current
phoneme is influenced by the past and future phonemes. As a result, tri-phones
are used in the basic speech sound unit, to introduce left and the right context.

The estimation of precise representation of input feature vectors for each basic
sound unit is the second stage of acoustic modelling. The acoustic model tries
to determine P(X|W), the probability of an acoustic feature X given a phoneme
or word W. In the case of an isolated word ASR with an N-word vocabulary,
each word should have its own acoustic model. Here, P(X|W) will be the same
as P(X|βi) in that case, where B; denotes the ith word acoustic model. To esti-
mate the probability for the acoustic model, a statistical approach is used. Hidden
Markov Models (HMM) are often regarded as one of the most effective statistical
models [67]. The likelihood of a transition from state i to state j at a time frame t is
evaluated in an HMM and is known as transition probability aij. The observation
probability, bj(xt), is also computed from the observation vector xt, for every state
j. As shown in Fig. 3.2, an HMM usually comprises two states with no emission
probability, assigned to them, one at the beginning of the chain and the other at
the conclusion. The likelihood of emission in between states is calculated using
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Figure 3.2: Illustration of DNN-HMM. After [36].
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a Deep Neural Network (DNN). A DNN that is directly related to the emission
probability can be used to determine the posterior probability, P(θ|X). It denotes
the likelihood of a particular state occurring given the observed feature vector. To
accomplish this objective, each DNN output layer will correspond to a specific
HMM state, and the values collected from DNN will be translated to the emission
probability using Bayes’ rule. Specifically,

P(θ/X) =
P(X/θ)P(θ)

P(X)
, (3.4)

where P(θ) is a class prior in this case. A forced-alignment in the GMM-HMM
training generalizes the relative frequency of each class as determined by the class
labels. The eq. 3.4 can be rewritten as:

P(θ/X)

P(θ)
=

P(X/θ)

P(X)
, (3.5)

The HMM’s emission probability can be computed using the term on the right-
hand side of the above eq. 3.5. The denominator, P(X), will be used as a scaling
factor in this case. Here, Fig. 3.2 shows an illustration of the N-layer DNN used
in hybrid DNN-HMM [36].

3.3.2 Language Modelling (LM)

For any language, the language model presents a statistical representation of gram-
mar. There are some guidelines given in [66], which specify the allowed combi-
nations of basic language units. The language model, which uses the word as its
basic unit, attempts to calculate the probability, P(W), of each possible sequence
of words, W = {w1, w2, ..., wn} for a speech utterance. Traditional deterministic
grammar was used in the early days of language modelling. It generates a proba-
bility value of one for permissible proper structure. It also generates a probability
value of zero for any syntactically wrong structure. However generally, n-gram
language models are used to assess the likelihood of a given sequence of n words
being formed. The probability of any word sequence occurring, P(W), can be
computed as follows:

P(w) = P(w1, w2, ..., wn), (3.6)

P(W) = P(w1)P(w2|w1)...P(wn|w1, w2, ..., wn−1), (3.7)

P(W) =
n

∏
i=1

P(wi|w1, w2, ..., wi−1), (3.8)
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P(wi|w1, w2, ..., wi−1) is the likelihood of any word wi occurring given the se-
quence of words w1, w2, ..., wi−1 that has already been created. It signifies that
the estimation of the current word is based on previous predicted words. Proba-
bility estimation, due to the high number of alternatives in a broad vocabulary
language model, P(wi|w1, w2, ..., wi−1) is computationally difficult. The afore-
mentioned challenge is solved by employing Markov’s Nth order assumption,
and the resulting language model is known as the N-gram language model [22].
P(wi|wi − N + 1, wi−N+2, ..., wi−1) uses the last N − 1 words to estimate the cur-
rent word probability. If N = 2, the resulting language model is known as the
bi-gram language model, and it only uses the last word to compute the proba-
bility P(wi|wi−1). Similarly, with N = 3, the tri-gram language model can be
found, which uses the last two preceding words, P(wi|wi−1, wi−2). The probabil-
ity P(wi|wi−1, wi−2) is calculated for a specific word wi as:

P(wi|wi−1, wi−2) =
Count(wi−2, wi−1, wi)

Count(wi−2, wi−1)
. (3.9)

The number of times the words wi−2, wi−1, and w appear in this sequence is repre-
sented by Count(wi−2, wi−1, wi). Count(wi−2, wi−1) denotes the number of times
the words wi−2, wi−1 appear in this specific sequence. The transcriptions used to
train the ASR are used to compute the language model.

DNNs have improved in a variety of tasks, including language modelling, as
computer resources have increased. Recurrent Neural Networks (RNNs) are com-
monly used to complete this task due to variable length and consecutive text data
[49]. The Long-Short Term Memory (LSTM) network, for example, consistently
outperformed the others for language modelling [73]. RNN is a neural network
that not only processes its input w at time step t, but also processes its previous
hidden state st−1 to construct the current hidden state, s. RNNLM’s purpose is to
convert the history h into a fixed-dimension real vector, d, i.e.,

f (h) ∈ Rd, (3.10)

where f(.) denotes a mapping function that is dependent on the model used
for the task. Assume RNN receives input w from alphabet V and the hidden state
s is a d-dimensional real vector, s ∈ Rd. RNN may now be explained using only
two functions. After processing the current word w and the previous state st−1,
the state transition function δ generates a new state, st, i.e.,

st = δ(wt, st−1). (3.11)
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Then a function g : s → (0, 1)|V| transform new state st with a dimension d to
an output distribution over all the words, i.e.,

p(w|st) = g(st). (3.12)

The above eq. 3.12 can be rewritten as,

p(wt|w1, w2, wt−1) = p(wt|st−1). (3.13)

Here,

st−1 = δ(wt−1, st−1),

= δ(wt−1, δ(wt−2, st−3),

= δ(wt−1, δ(wt−2, δ(..., δ(w1, s0).

(3.14)

It can be concluded that the calculation of any state st, is dependent on all
previous histories, beginning with w1 and ending with wt. Theoretically, the net-
work can encode limitless history information, however, in practise, because of
computational limits, RNNLM is unable to do so. When compared to the vanilla
RNNLM, which uses the affine transform for both the functions g and δ, LSTM
uses a gated approach that allows the model to learn long-term dependencies.

3.3.3 Decoding

The method of decoding involves guessing the word sequence from the audio
data. For the estimate task, this technique employs the acoustic and linguistic
models. For this objective, statistical estimation were used. First, the utterance’s
acoustic feature vectors, X = x1, x2, ...xt are retrieved. The decoder then tries to
determine the best words sequence, Ŵ = w1, w2, ..., wn for the supplied speech,
with the least amount of error. It can be calculated mathematically via maxi-
mization of the posterior probability, P(w|x). The entire decoding process can
be thought of as a search, in which the decoder looks for possible word sequences
and chooses the one with the highest posterior probability. Thus, the new decod-
ing equation is represented by:

Ŵ = W
argmax

P(W)LWWIPN(W)P(X|W). (3.15)

Here, LW and WIP are assigned empirically, whereas N(W) represents the total
number of words in a particular word sequence, W.
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3.4 Chapter Summary

In this chapter, in depth intuition behind the working of ASR system in general
as well as hybrid DNN-HMM ASR system was surveyed. Where in the end, at
decoding stage for output generation, a shallow fusion of probabilities of both
acoustic and language modelling is done. In the following chapter, the perfor-
mance of hybrid DNN-HMM ASR system is improved using suitable data aug-
mentation techniques.
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CHAPTER 4

Data Augmentation for ASR

4.1 Introduction

In this chapter, CycleGAN-based data augmentation technique is investigated
without using any additional adult or children speech data for children ASR task.
Instead of learning one-to-one mapping for source-target speaker-pairs as in the
conventional voice conversion (VC) techniques, speakers are divided into source-
target classes and a generalized mapping is learned from one class to another and
vice-versa. In particular, CycleGAN-based data augmentation showed better im-
provement over the other techniques for children ASR task.

4.2 Proposed Approach

GAN frameworks are known for their capability of generating realistic fake out-
puts via estimation of underlying probability distribution function, a centeral
problem in signal processing [37]. The CycleGAN architecture involves the con-
cept of cycle-consistency, which ensures that the reconstructed output features are
around the original features [91, 42]. Considering the huge variability of acoustic
behaviour of children, we are targeting the diverse behaviour of their F0. Thus,
we explored two-class mapping of children voices using modified CycleGAN ar-
chitecture, as explained next [26].

4.2.1 Voice Conversion Using CycleGAN

The task of voice conversion based on speaker classes is to convert a general-
ized class of features a ∈ A to another generalized class of features b ∈ B. Here,
A, B ⊂ RD×T are assumed to be feature spaces for speakers with low and high
average F0 , respectively (details of which are provided in sub-Section 2.2). D is
the dimension of the input feature vector, and T is the number of speech frames.
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Two generators of the CycleGAN are trained to learn the mapping function
of GA→B : A → B, and GB→A : B → A. Two discriminators of the CycleGAN,
namely, DA : RD×T → [0, 1], and DB : RD×T → [0, 1], are used to discriminate if
a feature vector is from their respective class or not. Three different loss functions
are used during training in order to learn the above mentioned mapping functions
[33].

Adversarial loss: Adversarial loss is used to create adversary between gener-
ators and discriminators. For the generator-discriminator-pair, GA→B and DB, the
adversarial loss is estimated as:

Ladv(GA→B, DB) = Eb∼PB(b)[logDB(b)] +Ea∼PA(a)[log(1 − DB(GA→B(a)))], (4.1)

where E[.] is expectation operator.

Cycle-Consistency Loss: To make GA→B and GB→A inverse of each other, so
that no two inputs are mapped to the same output, cycle-consistency loss is ap-
plied, i.e., GB→A(GA→B(a)) ≈ a [11]. In particular,

Lcyc(GA→B, GB→A) =Ea∼PA(a)[∥GB→A(GA→B(a))− a∥1]+

Eb∼PB(b)[∥GA→B(GB→A(b))− b∥1],
(4.2)

where ∥.∥1 is L1-norm.

Identity-mapping loss: To ensure the integrity of the linguistic content, iden-
tity mapping loss is used [88]. Mathematically, identity-mapping loss ensure that
any feature belonging to the target class is mapped to itself, i.e., GA→B(b) = b.

Lid(GA→B, GB→A) = Ea∼PA(a)[∥GB→A(a)− a∥1] +Eb∼PB(b)[∥GA→B(b)− b∥1].

(4.3)

Discriminators are trained only on adversarial loss. The generator loss func-
tion is estimated as a weighted sum (weights given by λadv, λcyc, and λid hyper-
parameters) of the three loss functions, which is given by:
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Lgen = λadvLadv(GA→B, DB) + λadvLadv(GB→A, DA) + λcycLcyc(GA→B, GB→A)

+ λidLid(GA→B, GB→A). (4.4)

4.2.2 Children-to-Children Voice Conversion

Due to shorter length of vocal tract system and smaller vocal folds (i.e., lesser
mass), children have higher formant frequencies (F1 to F4) and F0 than those for
the adults [24]. Moreover, children speech contains large variations in F0, due to
the growing age of the children. To avoid scarcity of data per speaker, we propose
to use F0-based threshold to create two sets of speaker classes. An average F0 of
all the utterances present in the training corpus is sorted in an array. Thereafter,
the value of median is chosen to be the threshold (Fth). The utterances having
average F0 less than this threshold (Fth) were put together into one class, say class
A, and the utterances having average F0 more than the threshold were put into
another class, say class B. Thereafter, CycleGAN is employed for voice conver-
sion between class A and class B (i.e., two-way conversion). Fig. 4.1 shows the
functional block diagram for the proposed data augmentation approach for voice
conversion between high F0 children speakers to low F0 and vice-versa.

Figure 4.1: Functional block diagram of proposed CycleGAN-based data augmen-
tation for children ASR. After [71].
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4.3 Experimental Setup

4.3.1 Details of Dataset

Experiments are performed on ETS subset of English corpus released during ETLT2021
challenge [28]. The training corpus contains 53.43 hours of speech data from 800
speakers. Each speaker has 4 recordings leading to a total of 3200 audio files. De-
velopment (Dev) set contains about 3.3 hours of data belonging to 50 speakers.
There are a total of 200 audio files, corresponding to 4 recordings per speaker.
The evaluation (Eval) set contains approximately 3.3 hours of audio data from
the 50 speakers. Similar to train and Dev sets, there are 4 recordings available
per speaker, leading to a total of 200 audio files. These recordings involve both
read and spontaneous speech. Considering the challenge of limited data, the pro-
posed experiments only utilize the ETLT2021 dataset and no external speech in
the study.

4.3.2 CycleGAN

Input Features

To train CycleGAN, we extracted 24-dimensional (D) Mel Cepstral Coefficients
(0th + 23-MCEP coefficients), F0, and aperiodicity (AP) using WORLD vocoder
[50]. MCEP features and F0 were normalized by estimating their respective means
and standard deviations over the entire class of speakers. F0 was converted using
logarithmic Gaussian normalized transformation, while MCEPs were given as an
input to the CycleGAN. Speech synthesis was done using WORLD vocoder with
converted MCEPs, converted F0, and original aperiodicity.

Architectural Details

We used a CycleGAN-VC2 architecture based on the description given in [33].
PatchGAN was used for discriminator architecture with a total of three down-
sampling layers. For generator, 2-1-2D architecture described in [33] was used,
however, instead of using statistical upsampling layer (composed of interpola-
tion and pixel-shuffle layers), we used two-strided transpose-convolution layers,
such that network can learn its own upsampling. A total of two downsampling
layers, six residual layers, and two upsampling layers were used. Downsampling
and upsampling were done using strided 2D CNNs, while residual layers were
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composed of 1D CNNs [38]. Features were converted from 1D to 2D, and vice-
versa by feature alignment using 1D CNN after reshaping. Gated Linear Units
(GELU) were used as activation functions, and instance normalization was used
to normalize convolution layers.

Table 4.1: WER (%) comparison for various data augmentation techniques. After
[71].

Augmentation Technique Dev WER%
No Augmentation 15.28
SpecAugment (SA) 15.20

Speed Perturbations (SP) 14.19
Volume Perturbation (VP) 15.35

SA + SP 13.67
SA + VP 13.69
VP + SP 13.77

SA + VP + SP 13.31
*Only CycleGAN 16.28

CycleGAN Augmentation 14.63
SA + VP + SP + CycleGAN 12.11

*In this experiment, only CycleGAN data was used for training purpose. This
proves the synthesized data is intelligible.

Training of CycleGAN

The entire dataset was separated into two classes based on speaker’s average F0.
Then, 1590 utterances were taken from both the classes in order to train our net-
work. For the training corpus, variation in average F0 was observed from 90 Hz
to 355 Hz and Fth is found to be around 194 Hz. Segments of 256 frames were
selected from a randomly selected utterance, which added a second layer of ran-
domness for the training. CycleGAN was trained to convert features from one
class to the other, for which it was trained for 5 × 104 iterations with a batch size
of 8. To stabilize the training of the GANs, the Least Squares Generative Adver-
sarial Networks (LSGANs) were used [45]. Initial learning rates of 4 × 10−4, and
2 × 10−4 were used for generators and discriminators, respectively, which were
decreased by a factor of two at 3 × 104, and 4 × 104 iterations. Adam optimizer
with β1 = 0.5 and β2 = 0.999 was used to calculate gradients and update the
weights of the model. λcyc, λid, and λadv are taken as 10, 5, and 1, respectively.
λid is reduced to 0 after 2 × 104 iterations. To ensure generators does not fall be-
hind in training, discriminators are trained only when their loss value is above the
threshold of 0.05, allowing the generator to catch-up on the training because syn-
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Table 4.2: WER (%) comparison for various configurations of DNN. After [71].

DNN Configuration Dev
WER%

6 CNN layers + 7 TDNN-F layers 13.27
6 CNN layers + 9 TDNN-F layers 12.82
6 CNN layers + 11 TDNN-F layers 13.12

chronization of generator with discriminator is the key challenge in GAN training
[26, 25]. After training CycleGAN model, voice conversion is applied for high F0

speakers to low F0 and vice-versa, which gives a total of 3180 synthetic audio files.

4.3.3 ASR Training

The hybrid DNN-HMM ASR systems were built in Kaldi toolkit with the train-
ing recipe provided by the organizers of the INTERSPEECH ETLT2021 challenge.
40-D high resolution MFCC features are used for training the AM [62]. In addi-
tion, Cepstral Mean Variance Normalization (CMVN) is applied to reduce chan-
nel noise effects [72]. The AM is a chain model trained with lattice-free maxi-
mum mutual information (LF-MMI), and consists of Convolutional Neural Net-
work (CNN) layers followed by factorized TDNN layers (TDNN-F) of sizes 1024
[61], [63]. 100-D i-vectors are also fed along with MFCC features to provide
speaker adaptation during training. A n-gram language model (LM) is built us-
ing the training data transcriptions. Order of n is explored for the proposed ASR
model. Phonetic pronunciations are used from the CMU lexicon, with a G2P sys-
tem trained on Phonetisaurus [52]. Three-way speed perturbation (i.e., for the
speed perturbation factor of 0.9, 1.0, and 1.1), volume perturbation, and SpecAug-
ment are employed for data augmentation [57].

Speed perturbation is the augmentation method where the signal is resam-
pled as per the scale of speed to be perturbed, an example is shown in Fig. 4.2.

Volume Perturbation is an augmentation technique where the signal’s ampli-
tude is just scaled with the perturbation factor.

SpecAugment is applied directly to the feature inputs of a neural network (i.e.,
filter bank coefficients). The augmentation policy consists of warping the features,
masking blocks of frequency channels, and masking blocks of time steps, shown
in Fig. 4.3.
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Figure 4.2: Speed Perturbation Example. (a) original speech and (b) Speed per-
turbed speech. After [31]

Figure 4.3: Example of SpecAugmentation

4.4 Experimental Results

The ETLT 2021 challenge organizers have provided DNN-HMM-based system as
the challenge baseline for English track [28]. The DNN-HMM system has the same
configuration as explained in sub-Section 3.3.

4.4.1 Data Augmentation Results Using CycleGAN

The significance of generated data using CycleGAN along with the other con-
ventional augmentation techniques and its various combinations are also shown
for dev set in Table 4.1. For the Kaldi system, SpecAugment (SA) did not show
significant improvement. However, there is a remarkable relative reduction of
10-12.8 % WER compared to the baseline, when SA is combined with the other
conventional data augmentation techniques namely, SP and VP, respectively. The
CycleGAN generated data when augmented with the original data (which leads
to two folds of data) gives a relative improvement of 4.3 % WER without any
other conventional augmentation techniques. Compared to SA+SP+VP baseline,
there is a relative reduction of 9 % in WER using CycleGAN generated data with
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Table 4.3: WER (%) comparison for proposed data augmentation. After [71].
System Language Model (LM) Dev. Eval.

B1 3-gram 13.63 –
B0 4-gram 13.31 33.21
B2 5-gram 13.73 –
S1 2-gram 14.44 33.56
S2 3-gram 12.11 32.21
S3 4-gram 12.82 32.64
S4 5-gram 13.21 32.94

Table 4.4: WER (%) comparison with combination of proposed data augmenta-
tion. Here, ⊕ represents system combination operator. After [71].

System Dev. Eval.
S1 ⊕ S2 12.02 32.11
S2 ⊕ S3 11.95 32.10
S3 ⊕ S4 13.12 32.68

SA+SP+VP augmentations. Relatively, the best performance of 12.11 % WER is
achieved when all the augmentations are combined. An intelligibility of Cycle-
GAN generated speech is verified using ASR model trained only using synthetic
data. From Table 1, it is shown that only CycleGAN generated speech data in
training gives 16.28 % WER which shows the intelligibility of the synthetic speech
is not hampered much. Table shows WER comparison for the three DNN config-
urations with varying depths on dev set. Experimental results shows that 6 CNN
layers followed by 9 TDNN-F layers gave the highest reduction in WER compared
with the other configurations. Hence, in our further experiments, we took 6 CNN
layers followed by 9 TDNN-F layers as a DNN configuration for AM.

Table 4.3 shows the ASR results of baseline B0 and the proposed system. Here,
S1 to S4 refers to our proposed system with augmented data with different n-gram
LM. Similarly, in B1 & B2, the performance of baseline is observed in different n-
gram LM. Baseline system B0 results in 13.31 % WER and 33.21 % WER on Dev
and Eval sets, respectively. Experiments were conducted for different configura-
tions of LMs. Bi-gram LM showed increment of 1.13 % and 0.35 % in WER for Dev
and Eval sets, respectively. However, tri-gram and 4-gram LMs have shown sig-
nificant reduction in % WER compared to the baseline B0. The system S3 showed
the highest reduction of 1.20 % and 1.00 % in WER for dev and eval sets, respec-
tively. In addition, system combination for bi-gram with tri-gram, tri-gram with
4-gram, and 4-gram with 5-gram are investigated. Minimum Bayes Risk (MBR)
approach is used for the system combination, keeping uniform weights for all the
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systems (i.e., hypothesis-level combination). We found that the system combina-
tion of S3 ⊕ S4 gave the highest reduction of 1.36 % and 1.11 % in WER for Dev
and Eval sets, respectively.

4.5 Chapter Summary

In this chapter, we evaluated the performance of data augmentation for chil-
dren ASR using the CycleGAN model that learns a generalized mapping between
source and target class. Specifically, a group of children’s voices are mapped to an-
other (without using one-to-one mapping) based on average F0. The experimen-
tal results show that the proposed CycleGAN-based data augmentation approach
gives 3 % relative reduction in WER for children ASR. To achieve mentioned best
results, various DNN architectures along with different n-gram LMs were anal-
ysed, and the most optimum model was consist of 6 CNN 9 TDNNF layers and
4-gram LM, respectively.
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CHAPTER 5

Self-Supervised ASR

5.1 Introduction

The vision of low-resource ASR was proceeded with the development of Self-
Supervised Learning (SSL) ASR approach [80]. In this chapter, a detailed dis-
cussion of wav2vec 2.0, i.e., SoTA self-supervised ASR technique is presented. It
has mainly two types of training, namely, pre-training and fine-tuning. The key
component of this acoustic model is the transformer model. Thus, in this chapter,
first transformer is explained followed by complete architecture of SSL acoustic
model. Transformers are attention based encoder-decoder based model, which
has brought a revolution in sequence-to-sequence modelling.

5.2 Transformer

Introduction of transformer model has redefined the Neural Networks (NN) by
outperforming CNN and RNN. It is an attention-based model, that includes of
encoder and decoder architecture. The architecture of the transformer model is
shown in Fig. 5.1.

5.2.1 Encoder

The input data is provided to the encoder and hence, the speech representation
learning from this input data is majorly performed in the encoder part. Fig. 5.2
shows encoder architecture of the transformer model.

Input Encoding

Vectorization (input encoding):
An input sequence cannot be directly feed to any NN-based model. Hence, to
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Figure 5.1: Model architecture of the transformer. After [80].

Figure 5.2: Encoder architecture of the transformer model. After [80].

train the NN-based model, the input values should be distinctive. Furthermore,
the process of representation is called vectorization, if the input entities are in dis-
tinctive numerical representation. In Sub-Section 5.3, it will be discussed further
w.r.t. wav2vec 2.0 architecture, where a low-dimensional representation of input
values are created.
Positional Embedding
A sequential data is systematically arranged input elements. Hence, the arrange-
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ment, in the other words, position of each input element is a crucial information.
Thus, while having vector representation of an input value, positional informa-
tion is also embedded into it. Few methods used for positional encoding are:

PEpos,2i = sin(pos/100002i/dmodel), (5.1)

PEpos,2i = cos(pos/100002i/dmodel), (5.2)

where pos, d, and i represents position, input sequence length, and dimension
of model, respectively.

Attention Model

In deep learning, attention can be interpreted as a vector of significance weights,
which memorize the long source sequence. In attention mechanism, long source
sequences are memorized by shortcuts between the entire source input and the
context vector. This context vector learns and the alignment between source and
target. Hence, attention model has outperformed RNN, as RNN doesn’t have long
memory. Here, attention mechanism mainly works with three principal vectors,
namely, key, query, and value. Where each key, query, and value are assigned a
unique weight matrix, with dimension as:

Qw = dmodel ∗ dk,

Kw = dmodel ∗ dk,

Vw = dmodel ∗ dv.

(5.3)

Let there be n inputs entities and thus, the input matrix (Minput) will be of dimen-
sion n ∗ dmodel. Hence, multiplying Minput with key, query, and value weights, will
provide their respective matrix as:

Q = Minput ∗ Qw,

K = Minput ∗ Qk,

V = Minput ∗ Vw.

(5.4)

The final score matrix can be obtained with the following calculation [53],

A = Attention(Q, K, V) = so f tmax
(

Q ∗ KT
√

dk

)
V. (5.5)
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Multi-Headed Attention Model

For better understanding of sequence, multiple attention are considered in paral-
lel. It acts as of having different aspects of understanding. To combine the infor-
mation of all attention heads, each output score is concatenated as:

MultiHead(o/p) = Concat(A0, A1, A2, ..., Ai) ∗ Wo, (5.6)

where dimension of Wo is x, dmodel.

Add & Norm

This layer adds the input and output values of previous layer and then normalize
it. A simple addition is performed here, and its result is denoted as V. Hence, this
vector V is normalized using the following equation [56],

Normalize(V) = γ

(
v − µ

σ

)
+ β, (5.7)

where µ is mean, σ is standard deviation, γ is a scaling factor, and β is the
regularizing constant.

Feedforward Network

It is the basic neural network, as shown in Fig. 5.3. It consists of two hidden
layers, where input and output dimensions are same.

Figure 5.3: Feedforward neural network. After [74].
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Algorithm 1: Execution of Encoder model
Input: Labeled audio : L
Output: Predicted output : D

1. Input embedding

(a) Vectorization L → V // V = vector representation

(b) Find P // P = Positional Embedding

(c) X = V + P

2. Generate Qw, Kw and Vw

3. Calculate Multihead Attention = A

4. Normalization = AN

5. AN passes through FFNN

6. Normalization → D

Summary of Encoder Architecture

Following are the steps for execution of encoder model as shown in Fig. 5.2 :

• Input values are tokenized to have vector representation.

• Those vector representation are embedded with the positional embedding.

• With different key, query, and value weight matrix, for different attention
heads, attention value is calculated w.r.t. each attention head.

• Attention value of each attention head is further concatenated.

• Output and input of multi-headed attention are summed and then normal-
ized.

• This normalized output is further passed through a feedforward neural net-
work (FFNN).

• input and output of FFNN are added and then normalized.

• This normalized output is carried forward to the decoder.
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Figure 5.4: Decoder model architecture. After [80].

5.2.2 Decoder

Masked Attention

Masked attention is the one of the key difference between decoder and encoder.
Here, in the masked attention model, attention is calculated till the predicted
value, instead of the entire sequence. Whereas, in encoder’s attention model, the
entire sequence is considered for attention output.

Summary of Decoder Architecture

Following are the steps for execution of decoder model as shown in Fig. 5.4.

• Firstly, it creates a vector representation of the output sequence.

• It adds the positional embedding to those representations.

• Those values are feed to masked multi-head attention model.

• Input and output of above mentioned masked multihead attention are summed
and then normalized.
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Algorithm 2: Execution of Decoder model
Input: Labeled transcription : L
Output: Predicted probability : P

1. Embedding of output, i.e., transcription

(a) Vectorization L → V // V = vector representation

(b) Find P // P = Positional Embedding

(c) X = V + P

2. Generate Qw, Kw and Vw

3. Calculate Multihead Attention = A1

4. Normalization = AN1

5. Collect KW and VW from encoder and QW from A1

6. Calculate Multihead Attention = A2

7. Normalization = AN2

8. AN2 passes through FFNN

9. Normalization

10. Linearization and Softmax

• For the next multi-head attention model, the key and value are taken from
the encoder output, while the query is taken from the masked multi-headed
attention of the decoder.

• The above mentioned inputs and outputs are summed and then normalized.

• This normalized value is given to FFN network.

• FFN input and output are summed and normalized.

• Furthermore, by applying linear operation and softmax normalization, we
will achieve probabilistic information of each value.

5.3 Wav2vec 2.0

In this model, the learning is mainly divided in two phases as shown in Fig. 5.5,

1. Self-supervised learning as pre-training
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Figure 5.5: Flowchart of wav2vec 2.0 architecture. After [7].

2. Supervised learning as fine-tuning

The major improvement in this model is pre-training [7]. As in pre-training pro-
cess, the major part of training is done by generating a codebook similar to tokens
for its acoustic representation. This learning is further fine-tuned with the super-
vised training. The major architecture of model is the same for both pre-training
and fine-tuning process. The process of prediction is done in three major parts,
namely;

• The raw audio wave is converted into low-dimensional latent representa-
tion, i.e., Z

• Transformer then creates contextualized representation, i.e., C

• Linear projection of the output

As shown in Fig. 5.6, for feature encoding task audio is split into small chunks
with use of windowing. Each window is feed to a CNN, where CNN provides a
latent representation of the input audio signal.

5.3.1 Pre-training

It is a self-supervised method of learning, which is done with unlabelled data.
As the data is unlabelled, for learning quantized codebook representation is be-
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ing created. In pre-training, the linear projection of the output prediction is not
performed and training is done on unlabelled data.

Vector Quantization

Quantization is the process where the continuous data is represented as a finite
set of values. This arises a question, that how speech can be represented as fi-
nite representation? Usually in supervised speech recognition, there are finite set
of phonemes, similarly here finite representation are created in the form of code-
book. In this model, G codebooks are made with V codewords representation.
Here, the quantization is done by finding the best codeword from each codebook
and, then concatenated and processed with the linear transformation. The loss
calibrated in the process of quantization is known as diversity loss [7].

Ld =
1

G ∗ V

G

∑
g=1

−H( p̄g), (5.8)

where H(*) represents entropy. In this equation, Entropy of each codebook is com-
bined.

Figure 5.6: Wav2vec 2.0 architecture. After [7].

Masking

Masking is performed on the input given before to the transformer. For masking,
mainly two hyperparameters are defined, namely, p that is amount of masking,
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and M is number of consecutive time step to be masked. From the latent repre-
sentation of speech, few time steps are selected and then their M consecutive time
steps are masked. Loss calculated in this process is Contrastive Loss. Here, ct is the
context network output, which is centred over masked time step t, qt represents
codebook quantized value, and K are the possible distractors in codebook. Thus,
the loss can be calculated as [7]:

Lm = − log
exp (sim(ct, qt)/k)

∑q̄∼Qt exp (sim(ct, q̄t)/k)
. (5.9)

Here sim represents the scalar product of two vectors.

5.3.2 Fine-tuning

The quantization is not employed at this level of training. On top of the con-
text representation C, a randomly initialized linear projection layer is added. The
model is then fine-tuned using a modified version of SpecAugment and a typical
CTC loss. CTC assigns the probability of any output given an input. CTC targets
key challenges such as different input & output sequence length and alignment of
input & output. SpecAugment is a technique, where time and frequency masking
is performed on the signal, this delays the issue of overfitting and improves the
performance.

5.4 Experiments

TIMIT dataset is used for the reference of experiment. This dataset consist of ut-
terances of numeric value. The WER achieved in this experiment was 24 %, with-
out LM. The codes are mentioned in Appendix 4. In implementation, first the
transcription is cleaned, and a vocabulary dictionary is created. This dictionary
is used in the process of tokenizer and feature extraction. Then using hugging-
face API the whole wav2vec architecture is implemented in form of model and
processor.

Fairseq was also used for wav2vec 2.0 implementation. Here pretraining was
also implemented, data manifestation and finetuning but faced difficulty in de-
coding. The following were pretraining checkpoints achieved:

epoch: 430,

"train_loss": "2.458",

"train_ntokens": "40890.5",
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"train_nsentences": "359.912",

"train_prob_perplexity": "279.368",

"train_code_perplexity": "254.365",

"train_temp": "1.77",

"train_loss_0": "2.358",

"train_loss_1": "0.081",

"train_loss_2": "0.018",

"train_accuracy": "0.56572",

"train_wps": "1807.5",

"train_ups": "0.04",

"train_wpb": "40890.5",

"train_bsz": "359.9",

"train_num_updates": "24510",

"train_lr": "0.000475304",

"train_gnorm": "0.727",

"train_train_wall": "1244",

"train_wall": "556557"

5.5 Chapter Summary

In this chapter, discussion of SoTA self-supervised ASR technique, i.e., wav2vec
2.0 was done. Wav2vec 2.0 mainly consist of the transformer model, which was
also discussed in detail. Transformer is an attention-based encoder decoder ar-
chitecture. Transformers introduced concept of masked multi-headed attention,
which majorly contributed in outperforming the other sequence-to-sequence model.
In wav2vec 2.0 the feature encoding was done with CNN and mainly the pretrain-
ing was introduced, which improved the performance of acoustic modelling sig-
nificantly. In next chapter, proposed work based on this will be discussed, where
using unlabelled data even fine-tuning process is improved, result in improve-
ment of overall performance.
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CHAPTER 6

NST Learning

6.1 Introduction

ASR is a fast-growing field, where reliable systems are made for high resource
languages and for adult’s speech. However, performance of such ASR systems
is inefficient for children speech, due to numerous acoustic variability in children
speech and scarcity of resources. To that effect, we propose to use the unlabelled
data extensively to develop an ASR system for low resourced children in speech.
Furthermore, SoTA wav2vec 2.0 is used as the baseline ASR technique. The per-
formance of baseline ASR is further enhanced with the intuition of Noisy Student
Teacher (NST) learning.

6.2 Noisy Student Teacher (NST) Learning

The Noisy Student Teacher learning is a semi-supervised learning approach ex-
plored for various applications as mentioned in these literatures [87, 84, 58, 59, 77].
In this approach, there is a Teacher model, which is as usual trained on hard la-
belled1 data. While further similar or larger models are taken for iterative self-
training, where model in each iteration is trained by combining hard-labelled and
pseudo-labelled data. pseudo labelled data are unlabelled data with logits2 pro-
duced by a preceding model (i.e., either Teacher or N − 1th Student model). The
model that experience iterative training is known as Student model. The above
process is illustrated via Fig. 6.1.

1Hard-labelled data is a data whose audio files are provided with its respective reliable tran-
scription

2Logits are unnormalized raw prediction generated by a model
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Figure 6.1: Functional block diagram of NST learning. After [84].

6.3 Proposed Work

The proposed method aims to have a fusion of the state-of-the-art self-supervised
technique (i.e., wav2vec 2.0) and an efficient self-training approach (i.e., NST learn-
ing). The wav2vec 2.0 technique amateurs learning with the least possible data,
where combining it with iterative self-learning was not yet explored in the liter-
ature. While, the concept of NST is limited to the use of unlabelled data by gen-
erating its pseudo labels or adding noise to both (i.e., hard and pseudo labelled
audio) data during training. The major limitation subjected to this approach is
that, the learning information of the neural network model (i.e., weights or check-
points) was not transferred in the process. In the other words, the drawback of
NST learning here is if a model has already learned significantly with some hard-
labelled data, repeating the same training again from the beginning will be a re-
dundant task. This redundant training can be optimized by SSL approach wav2vec
2.0, where in the supervised fine-tuning, the learning parameters are initialized
with the pre-trained model (i.e., trained on unlabelled data). This use of check-
points of pre-trained model is exploited in our proposed work. As shown in
Fig. 6.2 and Algorithm 3, the Teacher model is initialized with pre-trained model
checkpoints, while in all Student models, the parameters are initialized by a pre-
ceding fine-tuned model. In the other words, if we are training Student1 model,
then the checkpoints achieved after complete training of Teacher model will be
used to initiate the training parameters for Student. While for training of Student
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Algorithm 3: Self-supervised learning with noisy student teacher learn-
ing. After [15]

Input: Labeled data : L, Unlabeled data : U, Checkpoints : C
Output: Weights : W, Model : f , Teacher Model : T,

Predicted output : y, Student Model : S

1. Train Teacher model T0 with labelled data L and Pre-trained model
Checkpoints C0.

2. Train Student Sk by

(a) pseudo-label created by teacher Tk model
ULabel = f Tk(U)

(b) Initialize weights of Sk with teacher Tk Checkpoints
WSk = CTk

(c) Apply SpecAugment on hard and pseudo-labels
D = Augment(L ∪ ULabel)

(d) Trained Sk with CTC Loss
ySk(i) = fSk(x(i)) for x(i) ∈ D

3. Set Tk+1 = Sk and repeat step 2.

Figure 6.2: Proposed NST approach in tandem with self-supervised learning. Af-
ter [15].
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2,3,..,N model, its preceding model’s (i.e., Student 1,2,...,(N-1) model) checkpoints
are used to initialize its parameters.

In Student training, the training data is also increased due to addition of pseudo-
labelled data. Thus, in all Student model training, the training data is a combina-
tion of hard and pseudo-labelled data. Here, pseudo-labelled data is unlabelled
data with the transcription generated from the parent (i.e., preceding student or
teacher) model. The pseudo-labelled transcription is further correct by LM and
then the empty transcription files are filtered out. While in experimentation, the
effect of LM use for pseudo labels generation is also mentioned. The LM used is a
word-level model, which targets the correct prediction of each word using Bayes’
theorem [44].

6.4 Experimental Setup

6.4.1 Pre-processing

Intensive processing was required in this corpus. First, all the audio files with
only non-speech information were removed, such as distortion, noise, laughter,
and giggle. From the remaining audio, all the non-speech tags were removed, or
replaced with a single “unknown” tag, as shown in Table 6.1. Here, each audio
is consisting of a single sentence and thus, all further punctuation marks apart
from apostrophe (’) are removed. To reduce further variability in the list of to-
kens, all the text were converted into the lower case. After this process, a set of
vocabulary dictionary was created, resulting into 26 alphabet characters, apostro-
phe, Padding ([PAD]), and unknown tag ([UNK]). These 30 tokens were randomly
given a numerical representation. From this set of tokens, a tokenizer is created
using HuggingFace ASR Processor [1] , which will encode the string with a nu-
merical character-level representation. This encoded string along with padding is
dynamically added to each audio representation feed to the learning model. Fine
selection of hyperparameters needs to be done empirically.

6.4.2 Teacher Training

Teacher training model is a wav2vec 2.0 architecture proposed in [7]. In this archi-
tecture, checkpoints of a pre-trained model are considered to initialize the param-
eters of a fine-tuning model. Here, the pre-trained model used is a Facebook’s
base model of wav2vec 2.0 [2], which was trained on 53k hours of unlabelled
Libri-speech data. The learning rate was initialized with 10−4, 30 epochs, batch
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size of 8, weight decay was 0.005, and warm up step was 1000. SpecAugment was
enabled in order to avoid overfitting. Grouping of audio is performed for train-
ing, based on length of audio, due to which maximum length of labels for audio
is dynamically predicted batchwise.

Table 6.1: Tokenization of raw non-speech labels. After [15].
Raw Labels Token

<BREATH>, <DISCARD>, <SILENCE>,
<SNIFF>, <No-Signal>, <COUGH>,

<Distortion>, <ECHO>
Tags are removed

<NOISE>, <SIDE_SPEECH>,
unknown utterance [UNK]

Padding [PAD]

6.4.3 Student Training

Architecturally, there is not much difference in the Student model. The hyperpa-
rameters were initialized as learning rate was 10−6 with 15 epochs, 2500 warm up
steps, and batch size of 12. As mentioned in Section 6.3 and shown in Fig. 6.1,
instead of using checkpoint of pre-trained model for Nth Student model training,
checkpoints of preceding model are used. For example, if N = 1 then Teacher
model is used to initialize the model parameter, while if n = 2, ..., N then (n − 1)th

student model was used to initialize the model parameters.

6.5 Experimental Results

In this section an overall evaluation of the experiments is done which is divided in
four parts. In first sub-section 6.5.1 key performance measure, WER is analysed.
In next sub-section how LM impacts the performance of proposed work. Then,
in a further subsection loss behaviour is analysed and in the last sub-section the
output transcription are studied in detail.

6.5.1 Performance Evaluation

The experiments are performed in three stages, namely, Teacher, Student1, and
Student2, as shown in Table 6.2, where both the results of acoustic modelling and
improved results with LM are presented. In this experiment, LM was not used
to generate the pseudo labels. It can be observed that the major part of acoustic
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Table 6.2: Experimental results without LM use in pseudo labels. After [15].

Model Type Dev. WER % Test WER %
Without LM

Test WER %
With LM

Teacher 33.9 34 32.3 [5.2%]
Student1 28.8 32.6 31.0 [4.9%]
Student2 27.4 33.3 31.5 [5.4%]

Values in [.] refers to the relative improvement occurred due
to LM

Table 6.3: Experimental results with LM corrected pseudo labels. After [15].

Model Type Test WER %
Without LM

Test WER %
With LM

Teacher 34 32.3
Student1 32.3 31.0
Student2 32.0 30.6

modelling is performed in Teacher training. The wav2vec2.0 approach for ASR
is meant to give a relatively lesser WER % with the least possible data, however,
in case of children ASR task, the quality of data transcription and intelligibility of
speech both are distorted. Thus, achieving a good accuracy with a fewer data is a
difficult proposition. Through our approach, we have tried to address this issue
as in Teacher model, major acoustic modelling is achieved. Hence, in our experi-
ments, we achieved 34 % WER without LM. Further, training of the Student model
will result in more intuitive learning of our acoustic model. In Student 1, its learn-
ing parameters had begun from the checkpoints of Teacher model (shown in Fig.
6.3) and hence, lesser epochs were required. Further, Student model has addi-
tional pseudo-labelled data, which will add into the learning of Student model.
Thus, we achieved reduction of absolute 5.1 % WER on Dev set in Student 1 train-
ing. Similar approach is applied to Student 2 training, where on Dev set, the WER
was reduced by absolute 1.4 %. This improvement is significant, however, lesser
difference compared to the preceding layers. This reflects the saturation of the un-
derlying model and hence, it will be highly prone to over-fitting. This possibility
was reflected in test results, where a significant improvement of 1.4 % without LM
was observed in test on Student 2 model compared to the Teacher model, while
in Student 2 model, without LM it decreased by 0.7 % WER. This drawback is
discussed in the next sub-Section.

In Table 6.3, results are shown with LM, being used for pseudo label genera-
tion. It should be noted that the divergence in performance, observed in between
Student 1 and Student 2 training is solved here, with the use of LM. This is due to
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reduction of prediction loss transfer in consecutive training model.

Figure 6.3: Loss and WER curve of Teacher and Student models. Where, (a) is for
Teacher, (b) is for Student 1, (c) is for Student 2, while Train loss (Panel I), Dev loss
(Panel II), and Dev WER (Panel III) are shown w.r.t. epochs. After [15].

6.5.2 Incorporation of Language Model (LM)

ASR experiments, mentioned in Table 6.2, have neither used LM for training nor
for generation of pseudo labels. Due to this, a major limitation faced in this ap-
proach was transfer of prediction error. It was noticed that the pseudo labels
generated by Teacher model were having some spelling errors. These errors were
not rectified in the succeeding training. To overcome this issue, LM is required to
avoid this situation of error transfer. Thus, in Table 6.3, LM is used for genera-
tion of pseudo labels, and it shows better performance as the transfer of error is
reduced.

6.5.3 Analysis of Loss Curves

The projection of loss and results on Dev set are shown in Fig. 6.3. In Fig. 6.3(a) a
smooth trend of decrement of train loss, Dev loss, and Dev WER plot w.r.t. epochs
can be observed. While in Fig. 6.3(b) and Fig. 6.3(c), a lot of distortion is expe-
rienced in all the three cases. In addition, the Dev curve seems diverging, while
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on the other side, peak difference is just of 0.01 of loss value, which is quite neg-
ligible. Graph in Fig. 6.3 depicts high training resolution in Student models. The
loss and WER graphs of Student starts nearly from the values, where Teacher
model graphs have concluded. This strengthens our hypothesis of eliminating
redundant training and emphasizing only on getting better resolution of acoustic
modelling.

6.5.4 Analysis of Predicted Text

Table 6.4: Ablation study of predicted transcription without LM. After [15].
Original String Predicted String

energy energ
to to wind up the wire
more on the rivet and
you’ll have more power

to t to wind up the wire
more on the rivet and
you’l have more powers

you’ll get more washers ill get more washers
um more electricity more electricity

well electricity in a circuit
they can like you can combine
them to make something work
light up

he electricity and a circuit
they can thike you can mind
them to make something work
light up

In this study, behavioural analysis of results is done with a few hand-picked
examples presented in Table 6.4 in order to justify the analysis. It can be observed
that children’s style is naive and thus, they repeat the word multiple times. How-
ever, repetition of voiced sound, results in repetition of consonants. For example,
children is speaking "to to" while it is interpreted as "to tto" or "to t to", although
it is an error, however, it reflects a good resolution of acoustic modelling. In addi-
tion to this, a major drawback observed is w.r.t. dense sentences, i.e., as the audio
are of maximum 10 seconds duration only, while some of them have transcription
of more than 300 characters in a string. In this case, the children speaker is speak-
ing so fast that the model is unable to understand. Hence, performance on high
tempo speech will be less. Non-speech words, such as "um" and "ahh" were not
identified even though they were part of the transcription, because these are like
vowel sounds, which represent a small pause and their occurrence in the overall
corpus is very less.
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6.6 Chapter Summary

In this chapter, we have presented an approach to solve challenges of children
ASR by proposing a novel fusion architecture of wav2vec 2.0 and NST learning. In
particular, we have tried to adapt the goodness of both the techniques, i.e., using
less labelled data and unlabelled data in an iterative manner. Hence, we were
able to relatively improve the results by 19.1 % WER in Dev set and 10 % WER
for Test set after using LM for pseudo labels. During ASR experiments, it was
experienced that the hyperparameters should be chosen carefully, because this
approach is highly prone to overfitting. The use of LM is a must, such that loss
transfer while training should be minimum.
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CHAPTER 7

Beamforming for Replay Attacks

7.1 Introduction

This chapter investigates the capability of the Delay and Sum (DAS) beamformer
to extract the reverberation characteristics in replay speech signals. The replay
mechanism consists of the characteristics of the recording, playback devices, and
corresponding environments due to which reverberation characteristics are em-
bedded into the replay speech signal. Further, analysis is presented for DAS vs.
Minimum Variance Distortionless Response MVDR beamformer for replay SSD
task. MVDR is a state-of-the-art beamformer for speech enhancement and farfield
ASR applications, as it successfully nullify the reverberation effects in distant
speech signals. Whereas, DAS suppresses the additive noise and retains the re-
verberation effect observed in the output signal and hence, DAS is suitable choice
for replay SSD task.

7.2 Signal Modelling and Beamforming

7.2.1 Signal Modelling for Microphone Array Signal

Assuming the acoustic paths between the sound source and the microphones in
the array to be linear and time-invariant (LTI) [20], the speech signal received by
the N-element microphone array is modelled as [65, 13, 55]:

zk(n) = rk(n) ∗ g(n) + vk(n),

= yk(n) + vk(n), k = 1, 2, ..., N,
(7.1)

where n is the discrete-time index, rk(n) denotes the impulse response of the
acoustic medium between desired source g(n) and kth microphone, * denotes the
convolution operation, and vk(n) represents noise at the kth microphone. Here,
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we have assumed that the speech signal yk(n) and the noise signal vk(n) are zero-
mean and uncorrelated. Furthermore, for replay speech signal, impulse responses
of recording devices (a(n)) and environment (b(n)) as well as impulse responses
of playback devices (c(n)) and environment (d(n)) are convolved. Let e(n) rep-
resents the combination of these impulse responses, and can be represented as
[3]:

e(n) = a(n) ∗ b(n) ∗ c(n) ∗ d(n). (7.2)

Hence, the replay speech signal (zkr) can be represented as:

zkr(n) = rk(n) ∗ e(n) ∗ g(n) + vk(n),

= ykr(n) + vk(n), k = 1, 2, ..., N.
(7.3)

Thus, the characteristics of the ykr(n) in eq. (7.3) is different from that of yk(n)
because of the additional impulse response e(n) caused by the replay mechanism.
Considering this e(n) as distinguishing characteristics of the replay spoof, it can
be emphasized using suitable signal processing technique for replay SSD. To that
effect, we present the significance of the DAS beamformer over MVDR for replay
SSD through mathematical analysis, and it this hypothesis validated using exper-
iments.

The representation of the received signal in eq. (7.1) in frequency-domain can
be expressed as [13]:

Zk(ω) = Rk(ω)⊙ G(ω) + Vk(ω),

Zk(ω) = Yk(ω) + Vk(ω), k = 1, 2, ..., N,
(7.4)

where Zk(ω), Rk(ω), G(ω), Vk(ω), and Yk(ω) are the discrete-time Fourier trans-
forms (DTFTs) of zk(n), rk(n), g(n), vk(n), and yk(n), respectively. Here, the sym-
bol ⊙ represents the componentwise multiplication operation. The frequency-
domain representation of N-microphone array can be represented in the matrix
form as :

Z(ω) = R(ω)⊙ G(ω) + V(ω),

= Y(ω) + V(ω),
(7.5)
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where,

Z(ω) = [Z1(ω), .., ZN(ω)]T, R(ω) = [R1(ω), .., RN(ω)]T,

G(ω) = [G(ω), .., G(ω)]T, Y(ω) = [Y1(ω), .., YN(ω)]T,

and, V(ω) = [V1(ω), .., VN(ω)]T.

(7.6)

7.2.2 Delay and Sum (DAS) Beamforming

The DAS beamformer is a primitive beamforming technique for noise reduction
in the array signal processing literature [32, 34]. This involves reinforcing the de-
sired signal while suppressing the unwanted noise signals. The conventional DAS
beamformer will delay all the input signals in time, such that the array sensor can
focus on one direction. Hence, the summation of the delayed signals will result
in suppression of noise, which is arriving from the other directions. Furthermore,
it can be postulated that the summation of the delayed signals leads to cancel-
lation of additive (random) noise. Fig. 7.1 shows the functional block diagram of
DAS beamformer from the receiver end. Here, weights for corresponding single
channel microphone signal in a microphone array are shown. The time-domain
representation of DAS beamformer is given by [10]:

b(n) =
1
β

N

∑
k=1

wkzk(n − τk). (7.7)

Furthermore, the frequency-domain representation of DAS beamformer is given
by taking DTFT of eq. (7.7), i.e., [85]:

B(ω) =
1
β

N

∑
k=1

wke−jωτk Zk(ω),

= WHZ(ω),

(7.8)

where

W =
1
β

N

∑
k=1

wke−jωτk , (7.9)

where wk is the elementwise weighting for the spatial window, β is the summation
of the weights, and W is the steering vector (optimized wights vector) of desired
linear phase shift and weights. The superscript H denote the Hermitian transpose.
The B(ω) represents the frequency response of beamformed signal. The power
at the output of the beamformer is calculated by taking autocorrelation of the
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beamformer output, i.e.,
p(ω) = E[|B(ω)|2], (7.10)

where E[·] is the expectation operator.

Algorithm 4: DAS Beamformer. After [48]
Input: Speech signal z(n)
Output: DAS Beamformed Speech Signal

1 for Every k = 1, 2 . . . N microphones do
2 Zk(ω) = DTFT(zk(n))
3 Zkdelay = Zk(ω)e−jωτk // Signal delayed
4 Zkscaled = Zkdelay ∗ wk // Signal Scaled

5 ∑N
k=1 Zkscaled // Sum all channel

6 B(ω) = 1
β ∑N

k=1 Zkscaled // Normalized

Figure 7.1: Functional block diagram of DAS beamformer. Different alignment of
signals after the microphones (k=1 to N) indicates difference in time of arrivals.
After [48].

7.2.3 Minimum Variance Distortionless Response (MVDR)

The perfect reverberation cancellation in multi-channel filtering is achieved using
MVDR beamformer [20, 29]. In this approach, Signal-to-Noise Ratio (SNR) of the
multi-channel audio signal is significantly improved by minimizing the distor-
tion (noise) [14]. Hence, to minimize the noise power, the variance is minimized
in such a way that it will retain the all-pass characteristics of the audio signal. The
price paid for this minimization of noise, is an increase in the computational com-
plexity of the system. The matrix of output power of MVDR beamformer is given
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by:

p(ω) = E[|B(ω)|2],
= WHC(ω)W,

(7.11)

where C(ω) and W represents the matrix of cross-power-spectral density and ini-
tial weight matrix, respectively. Here, for computation of FFT, finite overlapping
of time frames are averaged to estimate the sampled co-variance matrix. The co-
variance matrix for L time frames is given by [10]:

Ĉ(ω) =
1
L

L−1

∑
l=0

Zl(ω)ZH
l (ω), (7.12)

where Ĉ(ω) is estimated co-variance matrix. The computation of weights is done
by minimizing the noise and unity gain of the desired signal, i.e.,

arg min
W

WH(ω)Ĉ(ω)W(ω),

subject to WH(ω)s = 1,
(7.13)

where s represents the steering vector, which is the most crucial matrix for calcu-
lation of the beamformer. It provides the directional information of microphone
array. During this minimization, it affects the impulse response of the medium.
Let dk be the desired direction representation for element k. Then, sk is given by :

sk = ejwdk . (7.14)

Eq. (7.13) is solved by utilizing Lagrange multipliers [79]. Hence, through MVDR
beamformer, the obtained solution of optimum weight matrix is given by:

Wo(ω) =
Ĉ−1

(ω) s

sH Ĉ−1
(ω) s

. (7.15)

Hence, the optimum weights are used to get beamformed signal from the micro-
phone array signal, i.e.,

B(ω) = WH
o (ω)Z(ω). (7.16)

After optimization of weights, the output power (po) of MVDR beamformer is
given by:

po(ω) = WH
o (ω)Ĉ(ω)Wo(ω). (7.17)
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Algorithm 5: MVDR Beamformer. After [48].
Input: Speech signal z(n)
Output: MVDR Beamformed Speech signal

1 Ĉ(ω) = 1
L ∑L−1

l=0 Zl(ω)ZH
l (ω). // Co-variance Matrix

2 sk = ejwdk . // Steering Vector

3 Wo(ω) = Ĉ−1
(ω) S

SH Ĉ−1
(ω) S

. // Optimized Weight

4 B(ω) = WH
o Z(ω).

7.3 Experimental Setup

7.3.1 Feature Sets and Classifier Used

This paper aims to analyse relative significance of DAS vs. MVDR beamforming.
Hence, we utilized generally used feature sets and classifiers for anti-spoofing ap-
plications. The state-of-the-art baseline feature sets for anti-spoofing application
are the Constant-Q Cepstral Coefficients (CQCC) and Linear Frequency Cepstral
Coefficients (LFCC) feature sets [19, 51, 75, 76]. Along with these feature sets, we
also explored Mel Frequency Cepstral Coefficients (MFCC) and Spectral Magni-
tude Cepstral Coefficients (SMCC) feature sets [54, 81]. MFCC is explored in this
task as it is the state-of-the-art feature set for speech and speaker recognition task
[18]. SMCC feature set is extracted from the log-magnitude spectrogram followed
by DCT operation. All the feature sets consists of static, ∆, and ∆∆ coefficients.
The dimension of CQCC, LFCC, MFCC, and SMCC are 90, 120, 42, and 90, respec-
tively.

Furthermore, for classification task, we have used Gaussian Mixture Model
(GMM)-based classifier. In particular, we have used 512 mixture components to
train the GMM for replay SSD. As this choice of mixtures gives relatively better
performance.

7.3.2 Spectrographic Analysis

To analyse the effect of beamforming on ReMASC dataset, we observe Energy
Spectral Density (ESD) using spectrogram. Fig. 7.2 shows the spectrographic anal-
ysis of genuine (Panel I) and its corresponding spoofed speech utterances (Panel
II) from ReMASC and its beamformed versions (i.e., DAS and MVDR). Further-
more, the Fig. 7.2(a) represents that the speech signal is from ReMASC dataset.
Whereas the Fig. 7.2(b), and Fig. 7.2(c) shows the speech signal corresponding
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to DAS and MVDR beamformed versions of ReMASC dataset, respectively. It
can be clearly observed from Fig. 7.2 (b) and (c) that, due to beamforming, the
ESD of the genuine as well as spoofed speech signals get suppressed in the high
frequency region. In particular, the rectangular boxes of Panel II shows that us-
ing MVDR beamformer, the noise gets suppressed efficiently as compared to the
original ReMASC and its DAS beamformed version. Hence, this observation can
lead to inference, that the MVDR beamformer suppresses the reverberation noise,
whereas the DAS beamformer retains the reverberation characteristics primarily.

Figure 7.2: Spectrographic analysis of the genuine (Panel I) vs. spoofed (Panel II)
speech. Speech signal from (a) ReMASC, and its (b) DAS vs. (c) MVDR beam-
formed versions. After [16].

7.4 Experimental Results

We have evaluated performance of DAS vs. MVDR beamformers using % EER.
The SSD systems are developed for CQCC, MFCC, LFCC, and SMCC feature sets
using GMM-based classifier for all the three datasets, i.e., ReMASC and its DAS
vs. MVDR beamformed versions. The % EER on development and evaluation
sets are shown in Table 7.1 for all the three variants of datasets. The experiments
are performed using static, ∆, and ∆∆ features. However, it can be observed that
only static features performed better than all the other combinations. Hence, all
the results reported in Table 7.1 are obtained using only static features. It can be
observed from Table 7.1 that the improved performance is obtained on the DAS
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beamformed ReMASC than that for the ReMASC and its MVDR beamformed ver-
sion, for all the feature sets considered in this study. In particular, using DAS
beamformer, the absolute reduction in % EER over ReMASC, is 3.25%, 4.61%,
12.37%, and 4.70% for CQCC, LFCC, MFCC, and SMCC feature sets, respectively,
on the evaluation set. It is important to note that results for MVDR are not better
than that for the case of without beamforming. This suggests that the DAS beam-
forming can be potentially utilized to improve the performance of the replay SSD
system for VAs. Furthermore, the performance of all the systems are also shown
using Detection Error Trade-off (DET) curves in Fig. 7.3. In particular, the Fig.
7.3(a) is for development set and Fig. 7.3(b) is for evaluation set of all the three
datasets using CQCC and LFCC features.

Table 7.1: Results (in % EER) on ReMASC and its DAS vs. MVDR beamformed
versions using various feature sets. After [16].

Beamforming
Technique →

Without
Beamforming DAS MVDR

Feature Set ↓ Dev. Eval. Dev. Eval. Dev. Eval.
CQCC 19.15 22.12 17.30 21.40 38.15 23.61
LFCC 22.03 22.97 22.01 21.91 37.64 24.59
MFCC 25.11 26.58 23.99 23.29 40.73 33.95
SMCC 30.88 26.36 28.74 25.12 45.72 39.35

Figure 7.3: DET curves for ReMASC and its beamformed versions: (a) develop-
ment set, and (b) evaluation set. After [16].
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7.5 Analysis of Latency Period

In this study, we have analysed the trade between % EER and latency period (as
shown in Fig. 7.4), using CQCC feature for development set of ReMASC and
its beamformed version (i.e., DAS and MVDR). Here, the latency is variation of
performance evaluation (in % EER) w.r.t. varying duration of an input speech
signal. Hence, the variation of time duration, ranges from 20 to 2000 ms, with an
interval of 200 ms. It can be observed from the Fig. 7.4 that even for short latency
period, DAS is performing better than the other two approaches and hence, it
shows the significance of DAS beamformer for practical SSD system deployment
for voice assistants.

Figure 7.4: % EER vs. latency period using CQCC feature set for development set
of ReMASC and its beamformed versions (i.e., DAS and MVDR). After [16].

7.6 Chapter Summary

In this study, the significance of the beamforming techniques for the replay SSD
task for VAs is investigated. Hence, for replay CM development for VAs the ex-
periments are performed on ReMASC, which is specially designed for this pur-
pose. Also, four state-of-the-art feature sets, namely, CQCC, LFCC, SMCC, and
MFCC are used for the anti-spoofing experiments on VAs. The improved per-
formance is observed for the SSD systems developed by using the beamformed
dataset over the original ReMASC dataset. The beamforming suppresses the noise
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in the speech signal. This suppressed noise might be the common for original
and its beamformed versions. Hence, the discriminative acoustic cue in replay
mechanism might get enhanced in the DAS beamformed dataset than the MVDR.
The fact that MVDR gives relatively larger % EER than DAS beamformer indicat-
ing there is more confusion between genuine and spoofed signal, which is beam-
formed using MVDR than its DAS counterpart.
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CHAPTER 8

Summary and Conclusions

8.1 Summary of work presented in the thesis

Data Augmentation for ASR

In this thesis, we evaluated the performance of data augmentation for children
ASR using the CycleGAN model that learns a generalized mapping between source
and the target class. Specifically, a group of children’s voices are mapped to an-
other (without using one-to-one mapping) based on average F0. The experimen-
tal results show that the proposed CycleGAN-based data augmentation approach
gives 3 % relative reduction in WER for children ASR. To achieve mentioned best
results, various DNN architectures along with different n-gram LMs were anal-
ysed, and the most optimum model was consist of 6 CNN & 9 TDNN-F layers and
4-gram LM, respectively. The intelligibility of the CycleGAN generated speech is
also verified by using the synthetic-only training data. However, voice conversion
of one class of children’s speech into another contains some outliers. In addition,
from Fig. 2, the spectral smoothening effects can be observed in GAN-based syn-
thetic speech spectrogram.

Improved SSL with NST Learning

In this paper, we have presented an approach to solve challenges of children ASR
by proposing a novel fusion architecture of wav2vec 2.0 and NST learning. In
particular, we have tried to adapt the goodness of both the techniques, i.e., using
less labelled data and unlabelled data in an iterative manner. We were able to
relatively improve the results by 19.1 % WER in Dev set and 10 % WER for Test set
after using LM for pseudo labels. During ASR experiments, it was experienced
that the hyperparameters should be chosen carefully, because this approach is
highly prone to overfitting. The use of LM is a must, such that loss transfer while
training should be minimum. Further work can be extended on a larger dataset,
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especially on the unlabelled data, that might avoid the issue of overfitting.

Replay SSD for VAs

In this study, the significance of the beamforming techniques for the replay SSD
task for VAs, is investigated. Hence, for replay CM development for VAs the
experiments are performed on ReMASC, which is specially designed for this pur-
pose. Also, four state-of-the-art feature sets, namely, CQCC, LFCC, SMCC, and
MFCC are used for the anti-spoofing experiments on VAs. The improved per-
formance is observed for the SSD systems developed by using the beamformed
dataset over the original ReMASC dataset. The beamforming suppresses the noise
in the speech signal. This suppressed noise might be the common for original
and its beamformed versions. Hence, the discriminative acoustic cue in replay
mechanism might get enhanced in the DAS beamformed dataset than the MVDR.
The fact that MVDR gives relatively larger % EER than DAS beamformer indicat-
ing there is more confusion between genuine and spoofed signal, which is beam-
formed using MVDR than its DAS counterpart. In the other words, MVDR beam-
formed replay signal is very similar to its genuine counterpart, indicating overall
impulse response e(n) (which itself is the impulse response of four components)
are being ideally nullified. This finding is in agreement with the basic design
structure of MVDR beamformer.

8.2 Limitations of the Current Work

Data Augmentation for ASR

There are some outliers in audio conversion using CycleGAN architecture. This
has resulted in reduction of intelligibility of converted speech by 1% compared to
the original speech.

Improved Self-Supervised Learning with Noisy Student Teacher Learning

This approach is highly prone to overfitting. The use of LM is a must, such that
loss transfer while training should be minimum. Further work can be extended
on a larger dataset, especially on the unlabelled data, that might avoid the issue
of overfitting.
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Replay Spoof Speech Detection (SSD) for VAs

Only two beamforming methods were explored. While the accuracy received is
not practically deployable.

8.3 Future Research Directions

Data Augmentation for ASR

Other voice conversion methods can be explored for data augmentation. While
speech synthesis can also be explored using GAN with different architectures and
set of feature mapping. With a decent amount of augmentation, state-of-the-art
end-to-end ASR technique can also be explored. Apart from data augmenta-
tion with limited data, self-supervised learning can also be implemented utilizing
wav2vec2.0 the technique.

Improved Self-Supervised Learning with Noisy Student Teacher Learning

Other SSL approaches can also be explored instead of wav2vec 2.0. LM reduces
the error of acoustic modelling, as the better the LM, the lower will be the predic-
tion error transferred from one layer to another. In this work, a depth study of LM
was not performed, thus in further work it can be focused. There are some popu-
lar RNN and LSTM based LM, while transformer based LM can also be explored.

Replay Spoof Speech Detection (SSD) for VAs

In the future, other techniques such as 3D neural networks or modified MVDR
available for beamforming can be explored on microphone arrays signals for SSD
task on VAs.
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CHAPTER A

Setup

ASR frameworks toolkits, such as Kaldi, Espnet and Fairseq needs systematic se-
quence of steps to be executed for setup. The system configurations that were
used were:

• OS - Ubntu 18

• Python = 3.6 or 3.9

• gcc = 9

• cuda toolkit = 11.4

• torch = 1.10.2

Note recommendation is to first create virtual environment and then do all setup
into it.

A.1 Kaldi Setup

https://kaldi-asr.org/doc/install.html After following the above instruc-
tions, SRILM language model toolkit also needs to be setup additionally. Follow
the following instructions for that:

1. Download a zip file from URL http://www.speech.sri.com/projects/srilm/

download.html.

2. Change the name of zip of extension of "*.tar.gz" to "srilm.tar.gz"

3. Copy the file to ".../kaldi/tools"

4. open terminal at location ".../kaldi/tools" and execute this command on ter-
minal "bash install_srilm.sh"
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A.2 Espnet Setup

For installation, follow the steps mentioned at this URL https://espnet.github.

io/espnet/installation.html

Note:

• Prefer to have prior kaldi setup, it will give you flexibility to use fbank fea-
tures and some additional functionalities of kaldi with Espnet.

• In Step 3 of above-mentioned link, perform any one of the given option,
prefer the virtual environment method.

• Make sure the CUDA path is taken properly, if there is any uncertainty re-
lated to that, in Step 4 of above-mentioned link, make sure to mention Torch
and CUDA version, otherwise, it will be CPU only setup and neural net-
works won’t run properly.

A.3 Fairseq Setup

Installation of Fairseq was successful, a part of decoding script. In the following
installation Pretraining, data preparation and fine-tuning was done quite success-
fully. Following two URL links were used for setup:

• For Fairseq : https://github.com/facebookresearch/fairseq/issues/url

• For Python binding and wav2letter for decoding https://github.com/flashlight/

wav2letter/wiki/Building-Python-bindings

A.4 HuggingFace

This is very simple, it is just like using an Application Programming Interface
(API). Main library to install is "Transformers" and "jiwer" to calculate %WER .
Write this commands on terminal in your created environment:

• pip install transformers=4.17.0

• pip install jiwer

• pip install numpy

There is a possibility while execution one might face issue for different library and
packages, it can be simply solved by using "pip install" and googling over stack
overflow is a great practice to have.
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CHAPTER B

Data Preparation

B.1 Data File Preparation

In data preparation for ASR, we have to provide a proper input and output in-
formation in a document. For supervised frameworks such as Kaldi and espnet,
there can be various types of files, while usually four are main as follows:

• text : <Utternce ID> <Transcription>

• wav.scp : <utterance ID> <Audio Path>

• utt2spk : <utterance ID> <speaker ID>

• spk2utt : <speaker ID> <utterance 1 ID>, <utterance 2 ID>, ...

With suitable example, it can be studied in detail from https://kaldi-asr.org/

doc/data_prep.html

While for most of self-supervised ASR framework, only one file is required,
where every row will have unique audio information, and each row will consists
of "<audio path> <transcription>"

B.2 Flac to Wav File Conversion

Flac files are usually slow and are not compatible in all the frameworks, while
wav format files are the most commonly used format. Hence, in case of any com-
plication related to type of audio file and such uncertainty, "flac" or other formats
should be converted to "wav format". Do not prefer Python-based conversion or
rewrite method for audio format change. As it might just change the extension
or disrupt the audio file. Hence, use SOX command for such task. "sox infile.flac
outfile.wav" 1

1For more reference of codes made by me look to my GitHub repositary https://github.com/
Pixeliate?tab=repositories
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CHAPTER C

Voice Activity Detection (VAD)

Due to computational limitation, long audio cannot be processed. Thus, this
method was explored of Voice Activity Detection (VAD). It is the energy-based
classification of speech, where every segment is segregated in category of either
speech or non-speech audio. While this can be only useful where we want to only
work with audio but not the transcription. Because just based on this informa-
tion, transcription cannot be chunked w.r.t. audio. While in Kaldi due to force
alignment using HMM, the segmentation of audio is possible with their respec-
tive transcription, however this process also reduces the performance to a certain
extent.

By implementing this, we will receive a True(1) or False(0) label w.r.t. every
sample or frame. Some initial attempts are mentioned in the following code.
While I have noted that the sample-based VAD might work for similar environ-
ment and the same speaker, but not in general. That’s why energy-based (frame)
dependent seems to be more useful. Code of VAD is provided in this repository
https://github.com/Pixeliate/Voice-Activity-Detection-Sample-based-.git

#!/usr/bin/bash

import collections

import contextlib

import sys

import wave

import webrtcvad

def read_wave(path):

with contextlib.closing(wave.open(path, ’rb’)) as wf:

num_channels = wf.getnchannels()
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assert num_channels == 1

sample_width = wf.getsampwidth()

assert sample_width == 2

sample_rate = wf.getframerate()

assert sample_rate in (8000, 16000, 32000, 48000)

pcm_data = wf.readframes(wf.getnframes())

return pcm_data, sample_rate

def write_wave(path, audio, sample_rate):

with contextlib.closing(wave.open(path, ’wb’)) as wf:

wf.setnchannels(1)

wf.setsampwidth(2)

wf.setframerate(sample_rate)

wf.writeframes(audio)

class Frame(object):

def __init__(self, bytes, timestamp, duration):

self.bytes = bytes

self.timestamp = timestamp

self.duration = duration

def frame_generator(frame_duration_ms, audio, sample_rate):

n = int(sample_rate * (frame_duration_ms / 1000.0) * 2)

offset = 0

timestamp = 0.0

duration = (float(n) / sample_rate) / 2.0

while offset + n < len(audio):

yield Frame(audio[offset:offset + n], timestamp, duration)

timestamp += duration

offset += n
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def vad_collector(sample_rate, frame_duration_ms,

padding_duration_ms, vad, frames):

#num_padding_frames = int(padding_duration_ms / frame_duration_ms)

for frame in frames:

is_speech = vad.is_speech(frame.bytes, sample_rate)

sys.stdout.write(’1’ if is_speech else ’0’)

sample = "/home/speechlab/Desktop/Shreya/TLT_2021/ETLT2021_CAMBRIDGE_EN_baseline/ETLT2021_ETS_EN/audio/dev/1000000000018212-VE648280.wav"

audio, sample_rate = read_wave(sample)

vad = webrtcvad.Vad(int(1))

frames = frame_generator(30, audio, sample_rate)

frames = list(frames)

segments = vad_collector(sample_rate, 30, 300, vad, frames)

print(segments , "\n ============================================\n")
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CHAPTER D

Baseline for Pretraining + Finetuning using
Fairseq

#!/usr/bin/bash

#########################################################################

# THIS SCRIPT TO BE RUN ON Folder: self-supervsed-speech-recognition #

#########################################################################

flac_to_wav=true

partition=true

stage=3

raw_set="/Desktop/Shreya/myst-v0.4.2/data/test/test_Trans_wav.txt"

finetune_set="/home/priyankag/ssl/baseline_trial/test_finetune.txt"

test_set="/home/priyankag/ssl/baseline_trial/test_test.txt"

data_dir="data"

if [ $stage -eq 1 ] ; then

echo "stage 1 : Data Preparation"

for part in finetune test ; do

mkdir -p baseline_trial/data/$part

python3 baseline_trial/data_prep.py $flac_to_wav $raw_set...

...$part $partition

done

#stage=2

fi

if [ $stage -eq 2 ] ; then
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echo "stage 2 : Create Dictionary "

python3 gen_dict.py

--transcript_file baseline_trial/data/finetune/finetune_set.txt

--save_dir baseline_trial/dictionary/

#stage=3

fi

if [ $stage -eq 3 ] ; then

echo "stage 3 : FineTuning on pretrained model"

#python3 finetune.py

--transcript_file path/to/transcript.txt

--pretrain_model path/to/pretrain_checkpoint_best.pt

--dict_file path/to/dict.ltr.txt

python3 finetune.py

--transcript_file baseline_trial/data/finetune/finetune_set.txt

--pretrain_model baseline_trial/Pre-Trained_model/430_checkpoint.pt

--dict_file baseline_trial/dictionary/dict.ltr.txt

fi
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