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Abstract

An Automatic Speaker Verification (ASV) or voice biometric system performs
machine-based authentication of speakers using voice signals. ASV is a voice bio-
metric system which has applications, such as banking transactions using mobile
phones. Personal information, and banking details, demand more robust security
of ASV systems. Furthermore, the Voice Assistants (VAs) are also known for the
convenience of controlling most of the surrounding devices, such as user’s per-
sonal device, door locks, electric appliances, etc. However, these ASV and VA
systems are also vulnerable to various spoofing attacks, such as details, twins,
Voice Conversion (VC), Speech Synthesis (SS), and replay. In particular, the user’s
voice command can be conveniently recorded and played back by the imposter
(attacker) with negligible cost. Hence, the most harmful attack (replay attack)
of morphing user’s voice command can be performed easily. Hence, this thesis
aims to develop countermeasure to protect these ASV and VA systems from re-
play attacks. In addition, this thesis is also an attempt to develop Voice Liveness
Detection (VLD) task as countermeasure for replay attack.

In this thesis, the novel Cochlear Filter Cepstral Coefficients-based Instanta-
neous Frequency using Quadrature Energy Separation Algorithm (CFCCIF-QESA)
feature set is proposed for replay Spoofed Speech Detection (SSD) on ASV sys-
tems. Performance of the proposed feature set is evaluated using publicly avail-
able datasets such as, ASVSpoof 2017 v2.0 and BTAS 2016. Furthermore, the sig-
nificance of Delay-and-Sum (DAS) beamformer over state-of-the-art Minimum
Variance Distortionless Response (MVDR) for replay SSD on VAs. Finally, the
wavelet-based features are proposed for VLD task. The performance of proposed
wavelet-based approaches are evaluated using recently released POp noise COr-
pus (POCO).
Keywords: Automatic Speaker Verification (ASV), Voice Assistants (VAs), Spoofed
Speech Detection (SSD), Beamforming, Voice Liveness Detection (VLD).
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CHAPTER 1

Introduction

1.1 Motivation

Identity recognition incorporates various biometric traits, such as voice, finger-
print, iris, face, palmprint. Among these, voice as a biometric trait is emerging
due to its naturalness and ease of production. To that effect, it has led to the
development of speaker identification and verification systems. In particular, Au-
tomatic Speaker Verification (ASV) systems are also called as voice biometric sys-
tems. However, recent parallel developments in several speech technology appli-
cations, such as voice conversion, synthetic speech, and high quality microphones
and speakers have paved the way to breach (attack) ASV systems by presenting
the fake voice samples of the claimed identity, which are known as spoofing at-
tacks. These spoofing attacks are categorized, such as impersonation by twins [10],
Speech Synthesis (SS) [11], Voice Conversion (VC) [12], and replay [13]. Among
these known spoofing attacks, replay attacks are the easiest to mount, however,
difficult to detect due to the availability of high quality recording and playback
devices [14]. These attacks make the ASV system vulnerable and questions the
applicability of the ASV system in financial and privacy applications, such as
banking and voice assistants. These spoofing attacks can be overcome by either
developing the robust ASV system or implementing the separate countermeasure
system, which assist the ASV to detect the spoofing attacks. However, earlier ap-
proach will diminish the performance of the ASV system as there is a trade-off
between the performance of the ASV system and its robustness against the spoof-
ing attacks. This trade-off exists due to the fact that development of the robust
architecture (either feature set or classifiers) affects the speaker-specific charac-
teristics. Hence, ASV research community focused upon the developing efficient
countermeasure (CM) systems against spoofing attacks. To that effect, the devel-
opment in the ASVSpoof challenge campaigns emerged through the discussion in
first edition of special session in Spoofing and Countermeasures for ASV, held during
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INTERSPEECH 2013 [15]. These discussions helped to provide the common plat-
form and procedures for implementation of the CMs with statistically meaningful
datasets, protocols, and evaluation metrics and emerged as ASVSpoof-2015, -2017,
-2019, and -2021 challenges [1, 16–18]. The ASVSpoof-2015 challenge focused on
developing the CM systems for the spoofed speech signals generated from well
established text-to-speech (TTS) and voice conversion (VC) techniques. However,
replay speech signals are easy to generate with the help of easily available high
quality microphones and speakers. To address the vulnerability of the ASV sys-
tem against replay spoofing attacks, ASVSpoof-2017 challenge was designed to
develop CMs against real replay speech signals. Furthermore, the ASVSpoof-2019
challenge introduced two scenarios, namely, logical access (LA) and physical ac-
cess (PA), where LA addresses the spoofing attacks generated by the TTS and SS,
and PA addresses the replay spoofing attacks. The LA scenario in ASVSpoof-2019
challenge edition considers the TTS- and VC-based speech signals generated by
neural network-based vocoders. Whereas, the replay speech signals are simulated
using a range of real replay devices and carefully controlled acoustic conditions.

Furthermore, along with the ASV systems, the Voice Assistants (VAs) are also
known for the convenience of controlling most of the surrounding devices, such
as users’ personal devices, door locks, electric appliances, etc. [19]. There are sev-
eral VA systems available, such as Apple Siri, Google Assistant, Microsoft Cor-
tana, Samsung Bixby, etc. However, these VAs are also highly vulnerable against
spoofing attacks, similar to ASV systems. Although ASV and VAs seem simi-
lar, there is a significant difference, such as ASVs are designed for mono-channel
audio and near-field speech, while VAs are designed multi-channel audio and
far-field speech. To that effect, Realistic Replay Attack Microphone Array Speech
Corpus (ReMASC) is designed to develop CMs for VAs [20].

Furthermore, to improve the security of ASV and VA systems against these
spoofing attacks, the Voice Liveness Detection (VLD) system is used [21, 22]. In
this context, a ’liveness’ detection corpus called as the POp noise COrpus (POCO)
has been released in 2020 to allow research on development of robust VLD sys-
tems [5, 21]. One of the cues of liveness in a speech signal is the presence of pop
noise in a live (genuine) speech signal. Pop noise is a short-time distortion in a
speech signal, which is caused by a burst of air on the microphone originating
from a live speaker’s mouth [23]. Signals that are known to spoof ASV systems,
such as synthetic speech and replayed speech, fail to reproduce the pop noise
as strongly as a live speech signal [5, 24], of course, with the assumption that
spoofed speech is not recorded with wiretapping. Pop noise is found in live speech
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as sudden bumps of strong energy within duration ranging between 20 ms and
100 ms [21].

1.2 ASV with SSD System Architecture

An ASV system consists of two parts, namely, speaker verification (SV) and spoof
detection. SV deals with verifying a person’s identity to a known identity while
spoof detection, on the other hand, identifies the naturalness of the input speech
signal. A general spoof detection strategy consists of extracting discriminative
features or representations of the input speech, which, can be used by the trained
model to classify it as genuine or fake utterance. The Figure 1.1 shows the ar-
chitecture of speaker verification system along with SSD system. Here, the SSD
system identify the naturalness of the input speech and reject if it is spoofed one,
whereas if the claimed speech is natural then it will feed it to ASV or VA system
for further verification.

Figure 1.1: Block diagram of basic SSD system with ASV and VA system.

1.3 Application of Spoofed Speech Detection (SSD)

and Voice Liveness Detection (VLD) System

Some applications of the SSD and VLD systems are as follows:

• As the availability of high quality recording and playback devices are in-
creasing, the user’s voice command can be conveniently recorded and played
back by the imposter (attacker) to get unauthorized access of ASV and VA
systems. Hence, the most harmful attack of morphing user’s voice com-
mand can be performed easily. Hence, to protect our ASV and VA systems
from these types of spoofing attacks, we can employ VLD system, to confirm
the presence of live speaker.
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• The use of voice biometric system has been increasing intensively in the field
of banking and financing sector. Hence, these biometric systems should be
robust enough to prevent the spoofing attacks. To that effect, the develop-
ment of VLD and SSD systems are utmost needed.

• In order to verify the originality of a speech signal or a recording, SSD sys-
tems are used in forensic departments to verify the legitimacy of a speech
signal.

1.4 Contributions of The Thesis

1.4.1 CFCCIF-QESA Feature Set

In the past, auditory transform-based as well as Instantaneous Frequency (IF)-
based features have been proposed for replay SSD. In this context, IF has been
estimated either by derivative of analytic phase via Hilbert transform, or by using
high temporal resolution Teager Energy Operator (TEO)-based Energy Separa-
tion Algorithm (ESA). However, excellent temporal resolution of ESA comes with
lacking in using relative phase information, and vice-versa. To that effect, we pro-
pose novel Cochlear Filter Cepstral Coefficients-based Instantaneous Frequency
using Quadrature Energy Separation Algorithm (CFCCIF-QESA) features, with
excellent temporal resolution as well as relative phase information. CFCCIF-
QESA is designed by exploiting relative phase shift to estimate IF, without es-
timating phase explicitly from the signal.

1.4.2 Significance of DAS vs. MVDR Beamformer for Replay

SSD on VAs

Voice Assistants (VAs) are becoming more useful in daily life and hence, the safety
of VAs from various spoofing attacks is crucial. To that effect, we analyze the sig-
nificance of delay and sum (DAS) beamforming technique over the state-of-the-art
Minimum Variance Distortionless Response (MVDR) beamformer for replay SSD
for VAs. In particular, DAS is known to suppress the additive noise component
and retains the characteristics of replay mechanism and hence, DAS can be ex-
ploited for replay SSD in VAs. On the contrary, MVDR beamforming is proved to
be the efficient beamformer for far-field speech recognition application, however,
it suppresses the additive noise along with the characteristics of replay mecha-
nism. Hence, MVDR is not suitable choice for replay SSD in VAs.

4



1.4.3 Wavelet-Based Features

Given the attacker’s freedom of using any spoofing attack, there is a need to ex-
plore liveness detection approaches that can classify a live speech from all the
various spoofed speeches. To that effect, in this thesis work, the Morlet wavelet-
based approach for Voice Liveness Detection (VLD) is proposed. We use acoustic
cues of pop noise to discriminate a live speech signal from a spoof speech. Pop
noise is present in live speech signals at low frequencies, caused by human breath
reaching at the closely-placed microphone.

1.5 Organization of the Thesis Work

Figure 1.2: Flowchart of the Thesis.

Chapter-2 presents the literature survey of the previous research done in the
field of SSD and VLD systems for ASV. This chapter illustrates the systems devel-
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oped for VLD and SSD.
Chapter-3 discusses the details of basic SSD and VLD systems along with var-

ious processing required for executing these tasks. Furthermore, this chapter il-
lustrates the performance measures used for evaluation of systems. The details of
datasets and classifier are also described in this chapter.

Chapter-4 presents the proposed Cochlear Filter Cepstral Coefficients-based
Instantaneous Frequency using Quadrature Energy Separation Algorithm (CFCCIF-
QESA) features for replay SSD task. Using this feature set, we are supposed to
estimate the Instantaneous Frequency (IF) using QESA, which incorporates the
magnitude as well as phase information of the speech signal.

Chapter-5 discusses the significance of the DAS beamformer over MVDR for
replay SSD on VAs. The speech signal of replay consists of the replay mecha-
nism characteristics and spatial noise. The replay mechanism characteristics are
convolved with the original (i.e., genuine) signal, whereas spatial noise is addi-
tive in nature. For replay SSD, the approach should be developed such that it
should suppress the spatial noise and retain the characteristics of replay mecha-
nism (i.e., reverberation). This can be achieved by selecting the DAS beamformer
as opposed to the MVDR.

Chapter-6 describes the use of Morlet wavelet-based features for pop noise
detection. With respect to Heisenberg’s uncertainty principle in signal process-
ing framework, wavelet-based approach offers improved resolution in time and
frequency as compared to the STFT-based method.

Chapter-7 gives the overall summary of this thesis work along with the ap-
plication and the limitations of this work. In addition, this chapter presents the
potential future research directions.

1.6 Chapter Summary

This chapter presented spoof and voice liveness detection problems on ASV sys-
tems, and also described the key motivation for this thesis work. Furthermore,
the applications of SSD and VLD systems are explained. Finally, the overall orga-
nization of the thesis work is explained. The next chapter describes the literature
survey done on SSD and VLD systems, along with its limitations.
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CHAPTER 2

Literature Survey

2.1 Introduction

This chapter describes the previous efforts made in the direction of making robust
countermeasures for SSD. In the beginning, the chapter presents literature review
of previous work done in the direction of replay SSD and VLD for ASV and VA
systems. In particular/, few notable previous studies are discussed, which are
done on ASVSpoof 2017 v2.0, BTAS 2016, and ReMASC datasets for replay SSD
tasks. In the latter part, the chapter describes few studies reported for pop noise
detection. This literature search presented in this paper helps to position this
thesis work in the history of this research problem.

2.2 Literature Review

2.2.1 Replay SSD

ASV systems have been used for various applications, such as banking transac-
tions and access to systems associated with classified information. It is used to
grant access to only an enrolled set of speakers (users). All the remaining speak-
ers are treated as non-genuine or imposter speakers. Nevertheless, some impos-
tors deliberately attempt to get unauthorized access to the ASV system. These
deliberate attempts made by the impostor (i.e., attacker) are called as spoofing
attacks on ASV. Furthermore, an ASV system becomes robust by suppressing the
effect of recording and transmission channel information, acoustic noise, etc. This
robustness leads to vulnerability of an ASV system to spoofing attacks. Imper-
sonation, twins, voice conversion (VC), speech synthesis (SS), and replay are the
possible spoofing attacks on ASV systems. Out of these spoofing attacks, replay
attacks are the easiest to mount but difficult to detect due to the availability of
high quality recording and playback devices [14]. In order to develop robust
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countermeasures to detect spoofed speech, the first special session on Spoofing
and Countermeasures for ASV was held during INTERSPEECH 2013 [14, 25]. De-
tails of various vulnerabilities on ASV systems and their respective countermea-
sures (CMs) were presented in [14]. The need for standard datasets, protocols, and
performance evaluation metrics in this special session led to the ASVSpoof 2015
Challenge organized during INTERSPEECH 2015. This challenge concentrated
on developing several CMs against SS and VC spoofs using various kinds of fea-
ture extraction algorithms on a standard statistically meaningful ASVSpoof 2015
dataset [16, 26–30]. The CMs in this challenge were based on signal processing-
based techniques to develop feature sets, and Gaussian Mixture Model (GMM)
as pattern classifier for the two-class problem of genuine vs. spoof speech de-
tection (SSD). Among the various submissions by the participants, some notable
submissions were based on various feature sets, such as Cochlear Filter Cepstral
Coefficients Instantaneous Frequency (CFCCIF) (which was the winner system
during ASVSpoof 2015 challenge [31]), Linear Frequency Cepstral Coefficients
(LFCC) [32], and Constant-Q Cepstral Coefficients (CQCC) [32, 33]. Furthermore,
in the ASVSpoof 2017 challenge, the focus was exclusively on replay SSD [34–36],
whereas in the ASVSpoof 2019 challenge, the focus was on synthetic or simulated
replay (also called Physical Access (PA)) SS and VC-based attacks (called as Logi-
cal Access (LA)). Lastly, the most recent challenge is the ASVSpoof 2021 challenge
with three tracks, namely, LA, PA, and DeepFake detection [37].

After successful completion of ASVSpoof 2015 challenge, which addresses SS
and VC type spoofing attacks, the BTAS 2016 challenge was organized which ad-
dresses SS, VC, and replay type attacks. Here, a few notable contributions for
detection of these three spoofing attacks using BTAS 2016 dataset are shown in
Table 2.1. The study in [38], reports the significance of Long Short-Term Memory
(LSTM) as classifier with deep neural network-based and CQCC features over the
other neural network based systems and CQCC-GMM baseline system for SSD.
This study shows that, combination of deep features with CQCC and LSTM as
back-end classifier system performs well for replay SSD. In [39], the Teager En-
ergy Operator (TEO)-based features are proposed to compute the running esti-
mate of energy cues for SSD task. In particular, the Teager Energy Cepstral Co-
efficients (TECC) are extracted using linearly-spaced Gabor filterbank to extract
narrowband filtered signals. However, the obtained running energy via TECC is
estimated energy and hence, the Enhanced Teager Energy Cepstral Coefficients
(ETECC) is proposed in [40] to calculate exact running energy in signal for SSD.

Here, few notable contributions for replay SSD using ASVSpoof 2017 v2.0
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database are shown in the Table 2.1. During this challenge, the study reported
in [41] shows the relevance of neural network-based classifiers using spectro-
graphic features for replay SSD. In particular, the authors used Convolutional
Neural Network (CNN), Light-CNN (LCNN), and ResNet-based classifiers along
with spectrogram as features for replay SSD. Next, in [41], the authors employ
ResNet as classifier along with Constant Q Cepstral Coefficient (CQCC) features
for replay SSD. Furthermore, in this study, the performance of SSD system was im-
proved via score-level fusion of proposed system with the CQCC-GMM system.
In the later year, the similarity between genuine and spoofed speech in replay SSD
task is detected via deep Siamance features along with GMM is proposed in [42].
In particular, this proposed system performed well as compared to end-to-end
deep neural models for replay SSD. The study in [38], reports the significance
of Long Short-Term Memory (LSTM) as classifier with deep neural and CQCC
features over the other neural network-based systems and CQCC-GMM base-
line system for replay SSD. This study shows that, combination of deep features
with CQCC and LSTM as back-end classifier system performs well for replay SSD.
In [34], a comparative study for replay SSD is reported between various existing
feature sets, such as Linear Frequency Cepstral Coefficients (LFCCs), CQCC, Mel
Frequency Cepstral Coefficients (MFCCs), Inverted Mel Frequency Cepstral Co-
efficients (IMFCCs), Linear Prediction Cepstral Coefficients (LPCCs), Rectangular
Filter Cepstral Coefficients (RFCCs), Subband Spectral Centroid Frequency Coef-
ficients (SCFCs), Subband Spectral Flux Coefficients (SSFCs), and Subband Spec-
tral Centroid Magnitude Coefficients (SCMCs). In addition, the authors performs
cross-database experiments between BTAS 2016 and ASVSpoof 2017 using above
listed feature sets to find the consistent performing replay SSD system. In [43], the
authors proposed High Frequency Cepstral Coefficients (HFCC) features along
with Deep Neural Network (DNN) and Support Vector Machine (SVM) as back-
end classifier. Furthermore, the performance of proposed system is improved via
score-level fusion with CQCC. In later year, the study reported in [44], achieves
0% EER on both development and evaluation sets of ASVSpoof 2017 v2.0 dataset
using modified group delay function (MGDCC)-based features along with ResNet
classifier.

For SSD task, in [31], an Auditory Transform (AT)-based Cochlear Filter Cep-
stral Coefficients-based Instantaneous Frequency (CFCCIF) feature set was pro-
posed. It was based on cochlear filter and IF-based information. To that effect,
IF is estimated conventionally from the analytic phase denoted via the Hilbert
transform (HT) of the underlying real signal [45]. However, estimating IF from
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this approach is computationally expensive. Moreover, the resolution of HT in
time-domain is poor, as it requires a block (frame) of speech data [46]. To address
this issue, in [47] the authors proposed Cochlear Filter Cepstral Coefficients-based
Instantaneous Frequency using Energy Separation Algorithm (CFCCIF-ESA) fea-
ture set which uses Teager Energy Operator (TEO)-based Energy Separation Algo-
rithm (ESA) [48] to estimate IF with high time resolution for replay SSD task [49].
Due to the use of TEO in estimation of IF, CFCCIF-ESA utilizes only the amplitude
information of the signal for replay SSD. Moreover, due to absence of HT, it does
not contain the quadrature-phase component of the signal. Therefore, in order to
incorporate both the advantages, i.e., excellent time resolution of TEO and having
quadrature-phase component via HT, in this thesis we proposed Cochlear Filter
Cepstral Coefficients-based Instantaneous Frequency using Quadrature based En-
ergy Separation Algorithm (CFCCIF-QESA)feature set.

Furthermore, as the use of VAs increases, the vulnerability of these personal
devices are increasing. Hence, the imposters are mounting similar spoofing at-
tacks as ASV, on VAs to get unauthorized access of these devices. Although ASV
and VAs seems similar, there is a significant difference, such as ASVs are designed
for mono-channel audio and near-field speech, while VAs are designed for mul-
tichannel audio and far-field speech. To that effect, recently Realistic Replay At-
tack Microphone Array Speech Corpus (ReMASC) is designed to develop CMs
for VAs [20]. To that effect, in [50], the authors proposed Cross-Teager Energy
Operator (CTEO), which select the optimal channel from a multichannel input
based on maximum cross-energy computation. Here, via maximizing the cross-
energies, we can identify the distortions added due to intermediate devices in
replay speech signal. Hence, the proposed system performs well as compared to
baseline CQCC system.

2.2.2 VLD System

As we have discussed above, ASV systems are prone to spoofing attacks, such as
VC, SS, and replay. Out of these, the replay attack involves the least amount of
technological effort and hence, it is the easiest attack to mount on an ASV system.
The ASV challenges aimed to develop robust countermeasures against replay at-
tacks under various configurations of recording and the playback devices. How-
ever, the perspective of Voice Liveness Detection (VLD) has begun only recently,
when the POCO dataset for VLD was released in late 2020 [5, 21]. The POCO
dataset relies on pop noise cues for detection of live (i.e., genuine) speech. Pop
noise is generated due to the human breath reaching the microphone. Pop noise
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Table 2.1: Results (in % EER) from the literature of ASVSpoof 2017, BTAS 2016,
and ReMASC datasets on replay SSD for ASV and VA systems.

Dataset Authors Feature Sets Classifier
% EER

Dev Eval

ASVSpoof 2017 v2.0

(For ASV System)

Weicheng Cai et al. [41] CQCC ResNet 10.25 22.39

Kaavya Sriskandaraja et al. [42]
Siamese Embedding

Features
GMM - 6.40

Galina Lavrentyeva et al. [51] Spectrogram
LCNN+CNN+RNN 3.95 6.73

LCNN 4.53 7.37

Lian Huang et al. [38] CQCC+deep features LSTM 3.13 8.28

Roberto Font et al. [34] SCMCs GMM 9.32 11.49

Parav Nagarsheth et al. [43] HFCC+CQCC DNN-SVM 7.6 11.5

Lian Huang et al. [52] CQCC LSTM 3.62 9.56

Francis Tom et al. [44] MGDCC ResNet 0 0

BTAS (2016)

(For ASV System)

Lian Huang et al. [52] CQCC+deep features LSTM 0.09 0.93

Madhu Kamble et al. [39] TECC GMM 2.25 4.51

Ankur Patil et al. [40] ETECC GMM 1.50 2.95

ReMASC

(For VAs)
Rajul Acharya et al. [50]

CTECC GMM 16.46 15.93

CQCC GMM 20.57 23.31

is a distortion of short duration, which is caused by a burst of air on the micro-
phone originating from a live speaker’s mouth [23]. Due to the proximity of the
genuine/live speaker to the microphone, the pop noise is captured at the micro-
phone. However, in the case of a replay attack, the attacker records the speech
signal from a considerably large distance in order to be discreet. In this case, the
pop noise is absent or weakly captured in the recorded speech signal and thus,
making pop noise as characteristics of live speech.

Before POCO dataset was released, only a few studies had been reported for
VLD, such as low frequency-based single channel detection and subtraction-based
pop noise detection in [21], pop noise-based VLD for smartphones in [53], and
phoneme-based pop noise detection in [54]. However, since the release of the
POCO dataset, some work has been done in the direction of VLD as shown in
Table 2.2. The baseline system, which introduced the POCO dataset, uses Short-
Time Fourier Transform (STFT)-based features for detection of pop noise [5]. It
has been found that pop noise occurs in low frequency regions of typically ≤ 40
Hz [5]. Pop noise is a short-time distortion in a speech signal, which is caused
by a burst of air on the microphone originating from a live speaker’s mouth [23].
Signals which are known to spoof ASV systems, such as synthetic speech and
replayed speech, fail to reproduce the pop noise as strongly as a live speech signal
[5, 24], of course, with the assumption that spoofed speech is not recorded with
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wiretapping. Pop noise is found in live speech waveforms as sudden bumps of
strong energy within duration ranging between 20 ms and 100 ms [21]. To detect
pop noise, various techniques have been proposed in the literature, such as STFT
[55], Constant Q-Transform (CQT) [56], and bump wavelet-based features [57]. In
particular, the approach of using Continuous Wavelet Transform (CWT) was first
proposed in [57], wherein a bump wavelet was used.

Table 2.2: Results (in % Accuracy) from the literature of POCO dataset on pop
noise detection for VLD.

Dataset Author Feature Sets Classifier Frequency Range % Accuracy

POCO

Shrishti Singh et al. [58]
Spectral Root

Smoothing
GMM 0-11025 Hz 69.79

Sidhhant Gupta et al. [55] STFT CNN 0-40 Hz 80.51

Priyanka Gupta et al. [57]
Bump Wavelet

Based CWT
CNN 0-40 Hz 80.19

2.3 Chapter Summary

This chapter describes literature review of SSD and VLD systems in brief. Firstly,
few notable studies has been discussed for replay SSD using ASVSpoof 2017 v2.0
and BTAS 2016 datasets following by few top studies reported for replay SSD on
VAs using ReMASC dataset. Later, the brief literature survey for liveness detec-
tion using POCO dataset are discussed. In the next chapter, we will discuss the
experimental set used in this thesis work.
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CHAPTER 3

Experimental Setup

3.1 Introduction

In this chapter, we present an overview of corpora used in this work for develop-
ing the CMs against the spoofing attacks. In particular, the details of ASVSpoof
2017 v2.0, BTAS 2016, ReMASC, and POCO datasets along with their partitions,
recording conditions, etc. are given. Furthermore, the details of architecture of
various classifiers used in this study are given. In addition, the details of evalua-
tion metrics and data fusion techniques used in this study.

3.2 Datasets Used

3.2.1 ASVSpoof-2017 Challenge Dataset

This dataset was released for ASVSpoof 2017 challenge organized during INTERS-
PEECH-2017, and later it was publicly available [59]. However, data anomalies,
such as period of silence and zero value samples have been noticed by the chal-
lenge organizers and then these anomalies are addressed in the second version
of the dataset, which is known as ASVSpoof-2017 Version 2.0 dataset [1]1. In this
dataset, genuine utterances are selected from the RedDots corpus, which is de-
signed for text-dependent ASV using ten prompt sentences [60]. Replay spoof
signals are generated in 177 sessions using various acoustic environments and
heterogeneous devices. The standard partition of the dataset into training, devel-
opment, and evaluation is done as shown in Table 3.1 [1]. There are 61 distinct
replay configurations which are a combination of a playback device, a recording
device, and an acoustic environment.

1The ASVSpoof 2017 V2.0 dataset along with protocols and extended metadata is available
online at https://datashare.ed.ac.uk/handle/10283/3055 {Last access: 18, May 2022}
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Table 3.1: Statistics of the ASVSpoof 2017 dataset for the environment-
independent case. After [1].

Subset # Spk Utterances Environments
Genuine Spoof

Train 10 1507 1507 E3, E6
Dev 8 760 950 E3, E5, E6
Eval 24 1298 12008 E1 - E7
Total 42 3565 14465

E1: Anechoic Room, E2: Analog Wire, E3: Balcony,
E4: Canteen, E5: Home, E6: Office, E7: Studio, Spk:
Speaker

Table 3.2: Distribution of spoof speech utterances among the environments in
ASVSpoof 2017 dataset. After [1].

Environment # Utterances Environment # Utterances
Anachoic 748 Canteen 3517

Analog Wire 543 Office 7565
Balcony 1184 Studio 342
Home 570 - -

3.2.2 Biometrics: Theory, Applications, and Systems-2016 (BTAS-

2016)

This dataset was released during the speaker anti-spoofing competition during
IEEE International Conference on Biometrics: Theory, Applications, and Systems
(BTAS-2016) [3]. It considers all the major types of spoofing attacks, namely, re-
play, SS, and VC. 2BTAS-2016 dataset uses AVSpoof dataset [2]. Genuine utter-
ances in BTAS-2016 dataset are recorded from 44 subjects, which consists of 31
males and 13 females. The recording is performed in 4 sessions over the period
of 2 months, with varying recording setups and environmental conditions. Three
types of recording devices, namely, laptop using microphone AT2020USB+, Sam-
sung Galaxy S4 phone, and iPhone 3GS are utilized for the genuine speech signal
recording with 3 types of sample recordings: (1) reading part of 10 or 40 pre-
defined sentences read by subjects (read), (2) pass-phrases part of 5 short prompts
read by subjects (pass-phrases), and (3) free speech part of a free speech about any
topic for 3 to 10 minutes (free). The details of the BTAS-2016 dataset recordings
w.r.t. the session and recording type is shown in Table 3.3. The statistics of the
dataset w.r.t. replay configuration is shown in Table 3.4. It can be observed that
the training and development set consists of the similar kind of spoofing attack

2The BTAS 2016 dataset is available at https://www.idiap.ch/en/dataset/avspoof {Last access:18, May 2022}
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algorithms. Hence, known attacks are present in the development set. However,
the test set consists of two unseen replay attacks, which are known as unknown
attacks.

Table 3.3: Statistics of the BTAS-2016 dataset w.r.t. the session and recording type.
After [2].

Session 1 Session 2-4 Total
read 10 sentences 40 sentences 25.96 hours

pass-phrases 5 10 4.73 hours
free ≥ 5 min ≥ 3 min 38.51 hours

Table 3.4: Number of utterances in BTAS-2016 dataset. Acronyms in this Table
stands for the following terms: SS- Speech Synthesis, VC- Voice Conversion, RE-
Replay, LP- Laptop, PH1- Samsung Galaxy S4 phone, PH2- iPhone 3GS, PH3-
iPhone 6S, HQ- High Quality Speakers. After [3].

Train Dev Test
genuine 4973 4995 5576

spoof 38580 38580 44920
SS-LP-LP 490 490 560

SS-LP-HQ-LP 490 490 560
VC-LP-LP 17400 17400 19500

VC-LP-HQ-LP 17400 17400 19500
RE-LP-LP 700 800 800

RE-LP-HQ-LP 700 800 800
RE-PH1-LP 700 800 800
RE-PH2-LP 700 800 800

RE-PH2-PH3 - - 800
RE-LPPH2-PH3 - - 800

3.2.3 ReMASC: Realistic Replay Attack Corpus for Voice Con-

trolled Systems

ReMASC corpus is specifically designed to develop the CMs for VAs [4].3There
are important differences between ASV and VAs, primarily, the distance between
the speaker and microphone is larger in VAs. Furthermore, VAs utilize a micro-
phone array as opposed to the single microphone in ASV. In the ReMASC dataset,
132 voice commands are used. These voice commands consist of 273 unique
words for phonetic diversity. The number of speakers in the dataset are 50, out of
which 22 are female speakers and 28 are male speakers. Furthermore, out of 50, 36
speakers are native speakers of English language, 12 are Chinese native speakers,
and 2 are Indian speakers. The speech data is collected for 4 systems, details of

3This dataset is publicly available at https://github.com/YuanGongND/ReMASC {Last access:18, May 2022}
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which are shown in Table 3.5. Furthermore, to study the effect of recording de-
vice in replay attack, one low quality (iPod Touch (Gen5)) and one high quality
recorder (Tascam DR-05) is used. However, it is observed that even with Tascam
DR-05, channel and background noise are unavoidable. To that effect, for addi-
tional replay source recordings, Google Text-To-Speech (TTS) is used, which is
free from channel and background noise. For playback, 4 devices are used: A)
Sony SRSX5, B) Sony SRSX11, C) Audio Technica ATH-AD700X headphone, and
D) iPod Touch. Moreover, an additional playback device is used in the vehic-
ular environment as the built-in vehicular audio system. The ReMASC data is
recorded in 4 types of environments, namely, outdoor environment, vehicle envi-
ronment, indoor environment-1, and indoor environment-2. The statistics of the
dataset along with corresponding environments is shown in Table 3.6.

For this dataset, standard partition, protocols, and evaluation metrics, are not
provided by the dataset organizers. However, few architectures developed us-
ing various dataset configurations of ReMASC dataset can be studied in [40, 61,
62]. In [40], the authors proposed Enhanced Teager Energy Cepstral Coefficients
(ETECC) features for replay SSD on VAs. The study in [61] shows the significance
of Spectral Root Cepstral Coefficients (SRCC) features for replay SSD using GMM
as classifier. Furthermore, the novel neural network-based model is proposed
in [62] to improve the replay SSD for VAs.

Table 3.5: Microphone array settings for ReMASC dataset. After [4].

Device Sampling Rate
(in Hz) Bit depth Number of

channels
Amlogic 113X1 16000 16 7

Respeaker 4 Linear 44100 16 4
Respeaker V2 44100 32 6
Google AIY 44100 16 2

Table 3.6: Statistics of the ReMASC dataset w.r.t. various acoustic environments.
After [4].

Environment # Subjects # Genuine # Spoof
Outdoor 12 960 6900
Vehicle 10 3920 7644

Indoor-1 23 2760 23104
Indoor-2 10 1600 7824
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3.2.4 POp noise COrpus (POCO)

A significant amount of work has been done in the SSD literature. However, de-
tection of live speech has only been paid attention to recently, by using the re-
cent standard corpora, POp noise COrpus (POCO) [5] 4.For liveness detection of
speech, pop noise is utilized as characteristics of live speech. Pop noise is pro-
duced due to the breathing effects captured by the microphone. If microphone in
ASV system is assumed to be placed close to the genuine/live speaker, then it is
able to capture the pop noise effectively. Therefore, pop noise becomes a suitable
acoustic feature for distinguishing a live speech from a spoof (especially replayed)
speech signal. To that effect, the POCO dataset is developed to investigate the
liveness feature of ASV.

The POCO dataset consists of speech recordings of 66 speakers (32 male and
34 female), aged from 18 to 61 years, with varying levels of English language flu-
ency and accent. The dataset is recorded with 22050 Hz sampling frequency and a
bit-depth of 16-bits. The dataset is organized into three parts, namely, RC-A, RP-
A, and RC-B. These parts differ from each other in number of microphones, type
of microphone(s) used, and presence/absence of pop filter. The details of these
3 parts are given in Table 3.7. The subset RC-A represents live speaker record-
ings having pop noise. The subset RP-A consists of emulated scenario of spoofed
speech by using pop filter to eliminate/diminish pop noise. While RC-A and RP-
A consists of speech data captured by a single microphone, the subset RC-B con-
sists of speech data captured by an array of 15 microphones. Like the RC-A subset,
the RC-B subset also doesn’t use pop filter and, hence, corresponds to live speech.
Speech signals in RC-B set are recorded in 3 settings w.r.t. speaker-microphone
distances, namely, 5 cm, 10 cm, and 20 cm. The effect of human breath on the
microphone depends on the uttered phoneme type. Thus, the POCO dataset is
collected such that it consists of speech recordings of 44 words corresponding to
44 phonemes in the English language, as shown in Table 3.8.

For each of the recording setting (RC-A, RP-A, RC-B (5 cm), RC-B (10 cm),
and RC-B (20 cm)), each word shown in Table 3.8 was repeated 3 times by every
speaker. Furthermore, in the case of RC-B setting, where multiple microphones
were used, all the microphones were tuned independently so that the maximum
volume remained below the threshold of −6 dB. The dataset is not partitioned
into training, development, and evaluation subsets. Thus, experiments using this
dataset can be conducted by considering non-overlapping training, and testing
subsets.

4The POCO dataset can be found at https://github.com/aurtg/poco {Last access:18, May 2022}
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Few architectures on voice liveness detection using POCO dataset, can be stud-
ied in [58, 63, 64]. In [63], due to the low frequency constraint, the authors shows
the low frequency wavelet transform-based features using CNN as classifier. The
study in [58] shows the significance of modified group delay features for pop-
noise detection with GMM-based classifier. In [64], the authors shows significance
of CQT-based features for voice liveness detection using SVM-based classifier.

Table 3.7: The three subsets of POCO dataset. After [5].

Subset
Microphone

Name

Microphone

Frequency

Response (in Hz)

Microphone

Directionality

Number of

Microphones

Distance of speaker

from the microphone

(in cm)

Pop Filter

RC-A audio-technica AT4040 20 - 20, 000 Cardoid 1 10 No pop filter used

RP-A audio-technica AT4040 20 - 20, 000 Cardoid 1 10 TASCAM TM-AG1

RC-B audio-technica AT9903 30 - 18, 000 Omnidirectional 15 5, 10 and 20 No pop filter used

Table 3.8: The 44 words spoken 3 times each by each speaker. After [5].
44 words in the POCO dataset

about arm laugh bird bug busy chair
chip dad division end exaggerate fat five

funny gun his honest hop join kit
leather live monkey open paw pay pin

pink quick summer sham shout sit spider
steer run thong tip tourist who wolf
you be

3.3 Classifiers Used for SSD

In this work, binary classification is done using three types of classifiers, namely,
Gaussian Mixture Model (GMM), Convolutional Neural Network (CNN), and
Light-CNN (LCNN). While our primary emphasis is on the improved perfor-
mance due to the proposed quadrature-based feature set, we also trade it with
the effect of different statistical and deep learning based classifiers. The details of
each of the classifiers is explained in this sub-Section.

3.3.1 Gaussian Mixture Models (GMM)

GMM is a parametric model, which is represented as a weighted sum of Gaussian
component probability densities. In particular, the parameters of a GMM are es-
timated using the Expectation Maximization (EM) algorithm iteratively using the
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training data. The GMM can be represented as a weighted sum of N component
Gaussian densities, which is given by [65]:

p(v/λ) =
N

∑
i=1

wig(v/µi, Σi), (3.1)

where v represents a D-dimensional continuous feature vector. Further, the mix-
ture weights are represented by wi, i=1, 2, ..., N, and g(v/µi,Σ), i=1,2, ..., N are
densities of the Gaussian mixture components. We wish to estimate parameters
of GMM, when the training vector and GMM configuration are given. This esti-
mation is done using EM algorithm which starts with λ (initial model), to estimate
λ̄ (new model), such that P(V/λ̄) ≥ P(V/λ). This estimated new model then be-
comes the initial model for estimation of the next model. This process is repeated
iteratively till it reaches a convergence threshold. The expression for estimate var-
ious parameters of GMM using EM algorithm is [65]:

(1) Mixture weights:

w̄i =
1
T

T

∑
t=1

Pr(i/xt, λ), (3.2)

(2) Means:

µ̄i =

T

∑
t=1

Pr(i/xt, λ)xt

T

∑
t=1

Pr(i/xt, λ)

, (3.3)

(3) Variances:

σ̄2
i =

T

∑
t=1

Pr(i/xt, λ)x2
t

T

∑
t=1

Pr(i/xt, λ)

− µ̄2
i . (3.4)

GMM learns features of genuine and spoofed speech from the given training
speech signals and generates a statistical model. In the testing (evaluation) phase,
the SSD system analyze the incoming utterance and then estimates the Log-likelihood
Ratio (LLR) using pre-trained GMM parameters.

3.3.2 Convolutional Neural Network (CNN)

CNN is a neural network-based architecture, which consist of one or more con-
volutional layers followed by classification layers [66]. In this work, the input
feature size for CNN is taken to be 30× 400. Our CNN architecture consist of five
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convolutional layers (Conv1, Conv2, Conv3, Conv4, and Conv5) followed by two
fully-connected layers (FC1 and FC2). Here, in the first two convolutional layers,
the data is convolved using a kernel size of 5× 5 with a stride of 1 and padding
of 2. Furthermore, in the remaining three convolutional layers, the kernel is used
of size 3 × 3 with the stride and padding of 1. Here, after every convolutional
layer, we have used max-pool layer having kernel of size 2× 2 with a stride of 2,
in order to reduce the size of data and also to reduce the computation cost of CNN
model. After extraction of features from the convolutional layers, the output of
Conv5 is fed to FC1 layer and the probabilistic output for classification is taken
from FC2. The Rectified Linear activation Unit (ReLU) function is taken as the
activation function for all hidden as well as FC layers [67]. Binary cross-entropy
is taken to be the loss function and for optimization of weights, we have used
stochastic gradient descent method [68].

3.3.3 Light-CNN (LCNN)

LCNN is modified version of CNN, which consist CNN with Max-Feature-Map
(MFM) activation function. It is defined as [51]:

yk
ij = max(xk

ij, xk+ N
2

ij ),

∀i = 1, H, j = 1, W, k = 1, N/2.
(3.5)

Here, x is the input feature vector of size H ×W × N, and y is the output feature
vector of size H ×W × N/2. Furthermore, i and j is represents frequency and
time-domain, respectively, and the value of k indicates channel index.

For our experiments, we have used input feature of size 30× 400 for LCNN
model. The LCNN model consists of four CNN layers (Conv1, Conv2, Conv3,
and Conv4) and two FC layers (FC1, FC2). In the convolutional layers, the data
are convolved using a kernel of size 3 × 3 with a stride of 1 and padding of 1.
After each layer, the MFM and max-pooling layer is used. The MFM layer uses
a kernel of size 3× 3 with stride of 1 and padding of 2. The max-pooling is used
with kernel size of 2× 2 and stride of 2, to reduce the size of feature vector and
also to reduce the complexity of the model. The ReLU activation function is used
in FC7 layer to discriminate between genuine and spoofed class. For calculation
of loss, we have used binary cross-entropy as loss function and for optimization
of weights, we have used stochastic gradient descent method.
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3.4 Classifier Used for VLD

3.4.1 CNN

A Convolution Neural Network (CNN) or ConvNet [69, 70] is a neural network
model that consists of one or more convolutional layers followed by a classifica-
tion layer. The two wavelet-based approaches described in sub-Section 6.3, which
yield matrices of sizes 45 × 45 and 3 × 512 × 512, respectively. For our experi-
ments, the CNN architecture (shown in Figure 3.1) consists of 3 convolutional lay-
ers (Conv1, Conv2, Conv3) followed by 3 Fully-Connected (FC1, FC2, and FC3).
The output of Conv3 is fed to the FC1 layer. The output of the final FC3 layer pro-
vides a probabilistic output for classification. Sigmoid activation function used
at the output of FC3, while ReLU activation function is used for all the hidden
layers. Binary cross-entropy is used as the loss function and stochastic gradient
descent algorithm is used as the optimization algorithm. The sequence and the
number of layers in the CNN are kept the same for 45-D handcrafted features as
well as scalogram. However, for the case of scalogram, images of size 512× 512,
the input is convolved with a kernel of size 7× 7 for Conv1 and 3× 3 for Conv2
and Conv3. For the case of handcrafted 45-D wavelet-based features, the input is
convolved with a kernel of size 3× 3 during the forward pass, with a stride of 1,
and zero-padding of 1. A max-pooling layer with a kernel size of 3× 3, and stride
of 1 is used.

Figure 3.1: The CNN architecture used for classification of the proposed Morlet
wavelet scalogram-based features. After [8].
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3.5 Performance Metrics

The performance metrics used in this work are % Equal Error Rate (EER) and %
classification accuracy. As we discussed in the sub-Section 3.3.1, the LLR scores
are estimated for testing data using a pretrained GMM. The LLR scores are used
to compute False Rejection Ratio (FRR) and False Acceptance Ratio (FAR). Hence,
the value of EER is, where FRR equals to FAR. Hence, the % EER is given by:

%EER =
FAR + FRR

2
× 100. (3.6)

While plotting a Detection Error Trade-off (DET) curve, we plot error rates on
both the axes, giving uniform treatment to both the types of errors, and use a scale
for both axes which, spreads out the plot and better distinguishes different well
performing systems and usually produces plots that are close to linear.

For calculation of % classification accuracy, first step is to use a classification
model, which make a prediction of class labels for each sample of testing dataset.
The predicted labels are then compared with actual labels of testing data. The %
classification accuracy is then calculated based on the correct prediction of classi-
fication model. The prediction of labels by classification model is divided in four
parts, namely, True Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN). The % classification accuracy is calculated from these four
parts as [71]:

% Classification Accuracy =
TP + TN

TP + TN + FP + FN
× 100%. (3.7)

3.6 Data Fusion Strategies

In our experiments, we have used score-level fusion technique on LLR scores,
which is evaluated from the multiple SSD systems. With the help of this score-
level fusion, we can capture the possible complementary information from differ-
ent SSD systems. The calculation of score-level fusion for two feature sets using
linear weighted sum is given by:

LLR f used = αi · LLR f eature1 + (1− αi) · LLR f eature2, (3.8)

where LLR f eature1 and LLR f eature2 are the LLR scores calculated from the feature
set-1 (system 1) and feature set-2 (system 2), respectively. The fusion parameter
αi and (1 − αi) ∈ [0, 1] show the contribution of the individual systems during
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score-level fusion.

3.7 Chapter Summary

This chapter explains the details of dataset used in this study, such as ASVSpoof
2017 v2.0, BTAS 2016, ReMASC, and POCO. Furthermore, the detailed architec-
ture of classifiers are explained which are used in various tasks. Later, the evalu-
ation strategies used in this work are explained along with the data fusion tech-
nique. In the next chapter, the Quadrature Energy Separation Algorithm-based
feature is explained for replay SSD.
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CHAPTER 4

Instantaneous Frequency Estimation Using Quadra-
ture Energy Separation Algorithm

4.1 Introduction

In a recent study, the TEO is used to estimate Instantaneous Frequency (IF) via
Energy Separation Algorithm (ESA). Hence, Cochlear Filter Cepstral Coefficients-
based Instantaneous Frequency via ESA (CFCCIF-ESA) was proposed, which uti-
lizes only the amplitude information of the signal for replay SSD. Moreover, due
to absence of Hilbert-transform (HT), it does not contain the quadrature-phase
component of the signal. Therefore, in order to incorporate both the advantages,
i.e., excellent time resolution of TEO and having quadrature-phase component
via HT, we propose CFCCIF-QESA feature set. Here, the term QESA represents
Quadrature-based ESA. Furthermore, QESA is based on the extended definition
of TEO for complex signals. To our knowledge, this extended definition of TEO
is exploited for the first time for SSD task. Additionally, the choice of quadrature-
phase (90◦) component along with in-phase component is justified by Mutual In-
formation (MI)-based analysis, described in further detail in Section 4.3. As a
result, we have developed CFCCIF-QESA feature set 1.

4.2 Estimation of Instantaneous Frequency (IF)

This Section describes the conventional methodology for IF estimation. In par-
ticular, two methods of IF estimation is shown, such as (i) IF Estimation Using
Analytic Signal, and (ii) IF Estimation Using ESA.

1This work is jointly done with PhD. scholar at DA-IICT, Ms. Priyanka Gupta.
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4.2.1 IF Estimation Using Analytic Signal

The IF of a real signal is defined as the time derivative of the unwrapped phase of
the analytic signal, whose Fourier transform is zero for negative frequencies. The
analytic signal xa(t) corresponding to a real signal x(t) is given by:

xa(t) = x(t) + jx̂(t), (4.1)

where x̂(t) is the Hilbert transform of x(t). The corresponding analytic (or instan-
taneous) phase ϕ(t) and IF are given by:

ϕ(t) = arctan
(

x̂(t)
x(t)

)
, (4.2)

IF =
d(ϕ(t))

dt
. (4.3)

The use of arctangent function in eq.(4.2) creates a signal processing artefact
(due to the periodicity property of arctan) called as phase wrapping, thereby cre-
ating discontinuities in the phase function, ϕ(t). Due to this discontinuity, the IF
cannot be derived directly from ϕ(t) using eq. (4.3) without the computationally
complex task of phase unwrapping [72].

4.2.2 IF Estimation Using ESA

The TEO Ψ{.} of a continuous-time real signal x(t) is defined as [73]:

Ψ{x(t)} = [ẋ(t)]2 − x(t)ẍ(t), (4.4)

where ẋ(t) denotes the first-order derivative of x(t), and ẍ(t) denotes the second-
order derivative of x(t) w.r.t. time t. Furthermore, for a discrete-time signal x[n],
the TEO is defined mathematically approximating the derivative operation in eq.
(4.4) [73]. In particular,

Ψ{x[n]} = x2[n]− x[n− 1]x[n + 1]. (4.5)

TEO tracks rapid energy (or its running estimate) of the speech signal within a
glottal cycle with excellent time resolution, requiring only three consecutive sam-
ples [49, 73]. Moreover, the TEO enables to estimate the Amplitude Modulation
(AM) and Frequency Modulation (FM) components of a speech signal, by the well
known ESA which is described next.
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The time-varying amplitude and frequency behaviour in a speech signal is
modelled as an AM-FM signal [74]. In particular,

x[n] = a[n]cos[ϕ[n]],

= a[n]cos
[

ωcn + ωm

∫ n

0
q(m)d(m) + θ

]
,

(4.6)

where the maximum deviation in frequency is |q[n]| ≤ 1, ωm ∈ [0, ωc], a(n) is in-
stantaneous amplitude, and θ is the constant offset. The instantaneous frequency
ω[n] is given by [75]:

ω[n] =
d
dt

ϕ[n] = ωc + ωmq[n], (4.7)

where ωc is the carrier frequency. Furthermore, TEO applied on AM-FM signals
(such as shown in eq. (4.6)), approximately estimates the product of instantaneous
amplitude and instantaneous frequency [74, 76]. In particular,

Ψ
[

a[n]cos
[∫ n

0
Ω[m]dm + θ

]]
≈ a2[n]sin2(ω[n]) = a2[n].ω2[n], (4.8)

where sin2(ω[n]) ≈ ω2[n], for ω << ωc. Thus, it can be observed that both a[n]
and w[n] contributes to running estimate of energy of AM-FM signal representing
Simple Harmonic Motion (SHM) [46]. Hence, the following expressions for a[n]
and ω[n] are called as Energy Separation Algorithm (ESA) [46]:

a[n] ≈ 2Ψ(x[n])√
Ψ(x[n + 1]− x[n− 1])

, (4.9)

ω[n] ≈ arcsin

(√
Ψ(x[n + 1]− x[n− 1])

4Ψ(x[n])

)
. (4.10)

4.3 Exploiting Relative Phase-Based Information

So far, most of the features have been derived from the magnitude spectrum of the
speech signal [77]. However, the phase characteristics can also be useful for many
applications [78–81]. In this work, we employ an information-theoretic, approach
to measure relative phase-based information, without estimating phase explicitly.
In particular, we use Mutual Information (MI) to analyze the amount of informa-
tion between the signal and its corresponding phase-shifted signal [82]. MI of two
signals is a measure of dependence of the signals on each other, i.e., a measure of
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how much information the two signals share. It tells us how much knowing one
of the two signals reduces uncertainty about the other. For example, if two signals
X and Y are independent, then knowing X does not yield any information about
Y and vice-versa, so their MI is zero. Mathematically, MI is estimated as [82]:

I(X; Y) = h(X)− h(X|Y), (4.11)

where h denotes the entropy (i.e., measure of randomness). Using the joint and
marginal Probability Density Function of X and Y, the MI is [82]:

I(X; Y) =
∫

x

∫
y

fXY(x, y) log2

(
fXY(x, y)

fX(x) fY(y)

)
dydx. (4.12)

Given that the speech signal can be modelled as an AM-FM signal, we consider
an AM-FM signal as:

a(t) = (1 + 0.5cos (60πt)),

x(t) = a(t) cos
(

2π fct + 4sin
(

2π fct +
(π

4

)))
.

(4.13)

For this AM-FM signal (expressed via eq. (4.13)) and its phase-shifted version, we
have estimated the MI. The angle at which MI is minimum is the optimum phase
value. From the values of MI obtained (as shown in Fig. 4.1), it can be observed
that the optimum phase difference is 90◦ with MI=1.4349 bits. In addition, for a
signal x(t), the Fourier transform is denoted as X(ω) = XR(ω) + jXI(ω). There-
fore, X(ω) is given as

X(ω) = tan−1
(

XI(ω)

XR(ω)

)
. (4.14)

From eq. (4.14), it can be observed that the Fourier transform phase X(ω) is al-
ways zero for XI(ω) = 0, which means if we do not use π/2-shifted version of
cos(ωt) (i.e., sin(ωt)) as an additional basis function in the definition of Fourier
transform; it is not possible to compute X(ω). In this context, Fig. 4.1 (b) shows
the MI obtained between a cosine and its phase-shifted versions. Notably, for the
cosine signal as well, MI is observed to be minimum at π/2 phase shift in cos(ωt)
(i.e., sin(ωt)) indicating significance of cos(ωt) (i.e., in phase) and its quadrature
component (i.e., sin(ωt)) in the original definition of the Fourier transform.

To that effect, taking phase shift as 90◦ (i.e., a quadrature), we propose an
improved relative phase-based CFCCIF-QESA feature set. The feature extraction
procedure of CFCCIF-QESA is shown in Algorithm 1. The quadrature component
of the real-valued speech signal is achieved using Hilbert transform, which results
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Figure 4.1: (a) AM-FM signal, and (b) MI between AM-FM signal and its phase-
shifted version.

in a complex-valued analytic signal, having a causal spectrum. Subsequently, TEO
for complex signals is used for estimating IF using ESA. In the next sub-Section,
we present the extended definition of TEO for complex signals, which is further
used in the CFCCIF-QESA feature extraction procedure.

4.4 Extracting TEO-Based Energy for Complex Signals

As discussed above, we exploit quadrature phase-shift by estimating analytic sig-
nal. Here, we discuss the extended definition of the TEO on a complex-valued
signal z(t), i.e., ψc[z(t)] which is given by [83]:

ψc[z(t)] = z(t)ż∗(t)− 1
2
[z̈(t)z∗(t) + z(t)z̈∗(t)]. (4.15)

Given that z(t) is complex, the TEO defined in eq. (4.15) is applied on real and
imaginary parts of z(t) as

ψc[xz(t)] = ˙xzR
2(t) + ˙xzI

2(t)− xzR(t)ẍzR(t)− xzI (t)ẍz I(t). (4.16)

28



When z(t) is complex, eq. (4.16) can be re-written as [84]:

ψc[z(t)] = ψ[zr(t)] + ψ[zi(t)]. (4.17)

In this work, we extract TEO-based energy using eq. (4.17) on complex-valued
analytic signal for improved estimation of energy as a part of ESA, discussed in
the next sub-Section.

4.5 CFCCIF-QESA Feature Extraction

The proposed CFCCIF-QESA feature set consists of various sub-systems, as shown
in Fig. 4.2. The filterbank of the CFCCIF-QESA consists of AT-based cochlear fil-
ters, which represent the human auditory system consisting of Basilar Membrane
(BM). As per place theory of hearing [75], only a particular region of the BM vi-
brate in response to a particular frequency region in the speech signal. The inner
hair cells act as transducers, converting the vibrations of the BM to energy. Given
that the motion of the hair cell is only in the positive direction, it is expressed math-
ematically as:

H(a, b) = (F(a, b))2, (4.18)

where F(a, b) is the output of the filterbank, and a and b govern the size and shape
of each cochlear filter. The hair cell output of each filterbank is converted into
a representation of the nerve spike density, which is computed as an average of
H(a, b) [31]. Furthermore, the quadrature-phase component in the output f [n] of

Algorithm 1: IF estimation using Quadrature-based Energy Separation
Algorithm (QESA)
1 Input: Subband filter output f [n] Output: IF fz[n] = f [n] + j.HT{ f [n]}
/* Using Equation(4.17) */

2 Er[n]← TEO{real( fz[n])}
3 Ei[n]← TEO{imag( fz[n])}
4 ψ{ fz[n]} = Er[n] + Ei[n]

5 IF← Cos−1
[

1−ψ{ fz[n]− fz[n−1]}
2ψ{ fz[n]}

]

the filterbank is introduced by taking its analytic signal, fz[n]. This is because the
analytic signal is generated by taking the Hilbert transform, which is nothing but
the quadrature-shifted version of f [n]. Now, in order to estimate the energy of
the complex-valued analytic signal, we use the extended definition of TEO as de-
scribed in Section 4.4. Furthermore, the energy profile obtained from the extended
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TEO is used to estimate IF using ESA. The ESA for IF estimation of a signal f (n)
is given by [75]:

ωi[n] ≈ Cos−1
[1− ψ{ f [n]− f [n− 1]}

2ψ{ f [n]}

]
. (4.19)

Here, the ψ{ f [n]} represents the Teager energy of f [n], and the ωi[n] represents
the estimated IF.

Figure 4.2: Functional block diagram of the proposed CFCCIF-QESA feature set,
along with conventional CFCCIF and CFCCIF-ESA feature sets. After [6].

4.6 Spectrographic Analysis of CFCCIF-ESA vs. CFCCIF-

QESA

To analyse the effectiveness of CFCCIF-QESA as compared to the CFCCIF-ESA,
we observe the spectrograms of both the feature sets for the same speech utter-
ance, which is shown in Fig. 4.3. Here, the spectrogram of a feature set represents
the Energy Spectral Density (ESD) in the time-frequency plane for that feature
set. However, this spectral representation is obtained before DCT operation in the
feature extraction. In Fig.4.3, Panel I and Panel II show the ESD for CFCCIF-ESA
and CFCCIF-QESA, respectively. Fig. 4.3(a) and Fig. 4.3(b) represent a genuine
speech utterance and corresponding spoofed (replay) speech utterance, respec-
tively. It can be observed from Fig. 4.3 that in the higher frequency region, the
resolution of CFCCIF-QESA feature set is high for both genuine and spoofed as
compared to the CFCCIF-ESA feature set. It is highlighted in Fig. 4.3 by curved
rectangle boxes. Furthermore, the oval boxes show the difference in ESD of gen-
uine vs. spoofed speech, for CFCCIF-QESA feature set. Thus, we believe that due
to the additional information of quadrature phase in CFCCIF-QESA, we can get
high ESD for both genuine and replayed utterances because all the other compu-
tational details are controlled in both the feature sets except the quadrature phase
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component.

Figure 4.3: Spectrographic representation of the genuine vs. spoofed speech.
Panel I and Panel II represent spectrographic representation of CFCCIF-ESA and
CFCCIF-QESA, respectively. Here, (a) genuine speech signal, and (b) correspond-
ing spoofed (replay) speech signal. After [6]

4.7 Experimental Results

This Section shows the experimental results obtained using the proposed feature
set along with existing features for replay SSD using ASVSpoof 2017 v2.0 and
BTAS 2016 dataset.

4.7.1 Results on ASVSpoof 2017 v2.0 Database w.r.t. Various Clas-

sifiers

The results of CFCCIF-QESA are compared with the other existing feature sets
using GMM, CNN, and LCNN, as shown in Table 4.1, Table 4.2, and Table 4.3,
respectively.

It can be observed that the proposed feature set (denoted by S5) performs the
best as compared to the other systems (i.e., S1 to S4). To be specific, we achieve
EER of 11.40% and accuracy of 73.35% on the ASVSpoof 2017 evaluation set. To
emphasize the benefit of incorporating quadrature phase component, the results
show that the proposed system S5 (i.e., with quadrature phase component) gives
an absolute decrease in EER of 3.37% and an absolute improvement of 4.83% in
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Table 4.1: Results on ASVSpoof 2017 v2.0 database using GMM. After [6].

Feature Set Dev. Eval.
% EER % Accu. % EER % Accu.

CQCC (S1) 12.87 81.75 18.81 59.72
CFCC (S2) 17.60 79.29 18.97 59.96

CFCCIF (S3) 16.61 78.59 17.38 58.13
CFCCIF-ESA (S4) 11.54 82.57 14.77 68.52

CFCCIF-QESA (S5) 9.48 87.30 11.40 73.35
S1+S5 9.48 87.30 11.40 73.35
S2+S5 9.47 87.34 11.39 73.36
S3+S5 9.37 87.34 11.38 73.39
S4+S5 9.25 87.70 11.31 73.80

S2+S3+S4+S5 9.22 87.90 11.25 73.96
S1+S2+S3+S4+S5 9.21 87.94 11.24 74.03

+ indicates score-level fusion as per eq. (3.8)

accuracy, as compared to system S4 (with no quadrature phase component). Fur-
thermore, we performed score-level fusion as per eq. (3.8) (denoted by + in Table
4.1) of system S5 with all the remaining systems S1 to S4. The score-level fusion
of three systems, which are based on cochlear filtering (i.e., S3, S4, and S5) further
reduced the EER to 9.36% and 11.19% on the development and evaluation sets,
respectively.

Table 4.2: Results on ASVSpoof 2017 v2.0 database using CNN. After [6].

Feature Set Dev. Eval.
% EER % Accu. % EER % Accu.

CQCC (S1) 5.38 93.56 20.77 55.23
CFCC (S2) 5.06 94.26 21.45 54.10

CFCCIF (S3) 12.92 86.90 20.53 55.70
CFCCIF-ESA (S4) 13.92 85.02 19.26 56.34

CFCCIF-QESA (S5) 9.74 88.36 19.10 57.40
S1+S5 2.36 97.48 12.87 71.45
S2+S5 7.30 92.32 17.90 58.10
S3+S5 8.77 90.64 17.52 58.17
S4+S5 9.19 88.77 17.27 58.80

S2+S3+S4+S5 7.10 92.88 16.45 59.30
S1+S2+S3+S4+S5 1.88 97.60 12.45 72.10

Table 4.2 shows the performance when CNN was used as the classifier. The
proposed feature S5 achieves better performance as compared to the cochlear
filter-based features (i.e, S2, S3, and S4). An absolute decrease in EER of 0.16%,
and an absolute improvement of 1.06% in accuracy, is observed as compared with
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system S4. It should be noted that even though this absolute improvement is not
very significant, we achieve EER of 12.45% and accuracy of 72.10%, when S5 is
fused with all the remaining feature sets.

Table 4.3: Results on ASVSpoof 2017 v2.0 database using LCNN. After [6].

Feature Set Dev. Eval.
% EER % Accu. % EER % Accu.

CQCC (S1) 7.00 90.40 30.11 40.21
CFCC (S2) 5.92 93.45 26.47 51.30

CFCCIF (S3) 13.36 85.61 20.29 55.50
CFCCIF-ESA (S4) 13.08 86.43 18.05 58.20

CFCCIF-QESA (S5) 11.22 87.10 17.52 59.30
S1+S5 3.51 95.08 15.00 63.10
S2+S5 3.84 95.96 15.22 62.63
S3+S5 9.83 89.88 16.49 61.10
S4+S5 9.28 90.05 15.96 61.45

S2+S3+S4+S5 2.31 97.60 14.30 65.01
S1+S2+S3+S4+S5 2.29 97.71 13.71 67.30

Table 4.3 shows the performance when LCNN was used as the classifier. We
observe better performance of S5 with LCNN as compared to the CNN. In par-
ticular, we obtain an EER of 17.52% and an accuracy of 59.30% on the evaluation
set of ASVSpoof 2017 database. Furthermore, performance behaviour similar to
GMM and CNN can be observed as S5 performs better when compared to all
the cochlear filter-based features (i.e., S2, S3, and S4). This also confirms the sig-
nificance of quadrature phase component in the proposed feature set. Further-
more, if we compare the performance of individual feature sets (from S1 to S4),
with their individual fusion performance with S5 (i.e., S1+S5, S2+S5, S3+S5, and
S4+S5), we observe improvement in performance for each fusion case. To that ef-
fect, on the evaluation set of ASVSpoof 2017, the maximum absolute decrease in
EER of 15.11% and 22.89 in accuracy is observed w.r.t. S1 and S1+S5, as shown in
the Table 4.3.

Classifier-Level Fusion: Given various classifiers (i.e., GMM, CNN, and LCNN)
were used on the ASVspoof 2017 v2.0 dataset, we now present the classifier-level
fusion results in Table 4.4. It shows the results obtained on the proposed CFCCIF-
QESA using GMM, CNN, and LCCN, labelled as S1, S2, and S3, respectively. The
best performance on the evaluation set is observed when the scores of all the three
classifiers are fused, leading to an EER of 11% and an accuracy of 74.02%. Notably,
CFCCIF-QESA shows relatively the best performance using GMM. The better per-
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formance of GMM can be due to the data being more approximated to Gaussian
and the characteristics are better suited for GMM. Notably, in the ASVspoof 2021
PA challenge, the LFCC-GMM baseline (with 39.79% ERR) showed better perfor-
mance as compared to the LFCC-LCNN baseline (with 42.16% ERR). This also
shows that based on distributional characteristics of data, GMM can indeed per-
form better than the neural network-based classifiers, such as CNN and LCNN.

Table 4.4: Results of classifier-level fusion of CFCCIF-QESA feature set using dif-
ferent classifiers on ASVSpoof 2017 v2.0 dataset. After [6].

Classifier Used Dev. Eval.
% EER % Accu. % EER % Accu.

GMM (S1) 9.48 87.30 11.40 73.35
CNN (S2) 9.74 88.36 19.10 57.40

LCNN (S3) 11.22 87.10 17.52 59.30
S1+S2 6.97 90.00 11.40 73.35
S1+S3 7.79 89.82 11.00 74.00
S2+S3 8.78 89.75 16.55 66.36

S1+S2+S3 6.62 90.99 11.00 74.02

4.7.2 Results on BTAS 2016 Dataset

The BTAS 2016 dataset is an extended version of ASVSpoof 2015 dataset. In partic-
ular, it contains VC, SS, and replay spoofed utterances. The experimental results
using proposed feature set and the other features are shown in Table 4.5. It can
be noted that CFCCIF-QESA performs relatively close to the CFCCIF-ESA feature
set. However, we observe relatively the best performance in EER when all the
features are fused to give an EER of 3.43% and an accuracy of 93.67%.

4.8 Chapter Summary

In this chapter, auditory transform-based CFCCIF-QESA feature set is proposed.
MI-based analysis is done to determine the optimum relative phase shift. It is
found that a quadrature phase shift is the best suited. Further, MI is to justify
basis functions used in the original definition of Fourier transform. To that ef-
fect, the signal is converted to its analytic signal (which has its real and imaginary
parts separated by a quadrature phase). The analytic signal is complex-valued
and hence, for the first time, the extended definition of TEO for complex signals is
used for the SSD task. Experiments are performed on ASVspoof 2017 version 2.0

34



Table 4.5: Results (in % EER and % classification Accuracy) on BTAS 2016 dataset
using GMM. After [6].

Feature Set Dev. Eval.
% EER % Accu. % EER % Accu.

CQCC (S1) 2.57 91.50 4.45 88.32
CFCC (S2) 1.98 92.61 4.18 90.08

CFCCIF (S3) 2.13 92.00 7.35 81.13
CFCCIF-ESA (S4) 2.07 92.11 5.02 86.23

CFCCIF-QESA (S5) 1.81 93.00 5.20 86.00
S1+S5 1.81 93.00 3.90 91.20
S2+S5 1.77 93.32 4.01 91.70
S3+S5 1.81 93.00 5.20 86.00
S4+S5 1.81 93.01 5.01 86.25

S2+S3+S4+S5 1.71 93.88 3.85 92.33
S1+S2+S3+S4+S5 1.63 94.23 3.43 93.67

and BTAS 2016 datasets and CFCCIF-QESA features are shown to perform bet-
ter than features without quadrature-phase on ASVSpoof 2017 version 2.0 using
GMM, CNN, and LCNN. Furthermore, the similar behaviour of proposed feature
set can be observed for BTAS 2016 dataset using GMM. The future research ef-
forts regarding this study, will be directed towards investigating the significance
of the proposed feature set on the other spoofing attacks, such as VC and SS on
ASVSpoof 2015 challenge dataset and on the recently released DeepFake speech
data of ASVSpoof 2021 challenge. In addition, apart from CNN and LCNN used
in this work, we plan to investigate the other deep learning-based classifiers, such
as ResNet and LSTM. In the next chapter, we present the relevance of effective
beamforming from the perspective of replay SSD on VAs.
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CHAPTER 5

Significance of Beamforming Technique for Re-
play SSD

5.1 Introduction

This chapter investigates the capability of the Delay and Sum (DAS) beamformer
to extract the reverberation characteristics in replay speech signals. The replay
mechanism consists of the characteristics of the recording, playback devices, and
corresponding environments due to which reverberation characteristics are em-
bedded into the replay speech signal. Further, analysis is presented for DAS vs.
MVDR beamformer for replay SSD task. MVDR is a state-of-the-art beamformer
for speech enhancement applications, as it successfully nullify the reverberation
effects in distant speech signals. Whereas, DAS suppresses the additive noise and
retains the reverberation effect observed in the output signal and hence, DAS is
suitable choice for replay SSD task.

5.2 Speech Signal Modeling for Microphone Array Sig-

nal

Assuming the linear and time-invariant (LTI) model for the acoustic medium
(path) between speech source and microphone array, the speech signal received
by N-element microphone array is given as [75, 85–87]:

xi(n) = ri(n) ∗ k(n) + ηi(n),

= yi(n) + ηi(n), i = 1, 2, ..., N,
(5.1)

where i represents the index for ith microphone in array, ri(n) is the impulse re-
sponse of the acoustic medium between desired source signal k(n) and ith micro-
phone. ’*’ represents the convolution operation and ηi(n) corresponds to additive
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noise of the ith microphone. Here, for modelling of noisy speech signal xi(n), it
is assumed that the speech signal yi(n) and noise signal ηi(n) are zero-mean and
uncorrelated. During development of the replay speech signal, impulse responses
of recording devices (b(n)) and environment (c(n)) as well as impulse responses
of playback devices (e(n)) and environment ( f (n)) are convolved with the source
signal. Let a(n) represents the combination of these impulse responses [88], i.e., :

a(n) = b(n) ∗ c(n) ∗ e(n) ∗ f (n). (5.2)

Hence, the replay speech signal (xir(n)) can be represented as:

xir(n) = ri(n) ∗ a(n) ∗ k(n) + ηi(n),

= yir(n) + ηi(n), i = 1, 2, ..., N.
(5.3)

Thus, the characteristics of the yir(n) in eq. (5.3) is different from that of yi(n)
because of the additional impulse response a(n) caused by the replay mecha-
nism. Considering this a(n) as distinguishing acoustic characteristics of the replay
spoof, it can be emphasized using suitable signal processing technique for replay
SSD. To that effect, first we present the significance of the DAS beamformer over
MVDR for replay SSD through mathematical analysis, and then it is validated
using suitable experiments.

The representation of the received signal in eq. (5.1) in frequency-domain can
be expressed as [86]:

Xi(ω) = Ri(ω)⊙ K(ω) + Hi(ω),

= Yi(ω) + Hi(ω), i = 1, 2, ..., N,
(5.4)

where Xi(ω), Ri(ω), K(ω), Hi(ω), and Yi(ω) are the discrete-time Fourier trans-
forms (DTFTs) of xi(n), ri(n), k(n), ηi(n), and yi(n), respectively. Here, the sym-
bol ⊙ represents the componentwise multiplication operation (due to convolu-
tion theorem for Fourier transform). The frequency-domain representation of N-
microphone array can be represented in the matrix form as :

X(ω) = R(ω)⊙ K(ω) + H(ω) = Y(ω) + H(ω), (5.5)
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where

X(ω) = [X1(ω), .., XN(ω)]T, R(ω) = [R1(ω), .., RN(ω)]T,

K(ω) = [K(ω), .., K(ω)]T, Y(ω) = [Y1(ω), .., YN(ω)]T,

H(ω) = [H1(ω), .., HN(ω)]T.

(5.6)

5.3 Beamforming

5.3.1 Delay and Sum (DAS) Beamformer

The DAS is a primitive beamforming technique for noise reduction in the array
signal processing literature [89, 90]. This involves reinforcing the desired signal
while suppressing the unwanted noise signals. The conventional DAS beam-
former will delay all the input signals in time w.r.t. the reference signal, such
that the array sensor can focus in one direction. Hence, the summation of the de-
layed signals with the reference signal will result in suppression of noise, which
is arriving from the other directions. Furthermore, it can be postulated that the
summation of the delayed signals leads to cancellation of additive (random) noise.
Figure 5.1 shows the functional block diagram of DAS beamformer from receiver
end. Here, weights for corresponding single channel microphone signal in a mi-
crophone array are shown. The time-domain representation of DAS beamformer
is given by [91]:

d(n) =
1
β

N

∑
i=1

wixi(n− τi). (5.7)

Furthermore, the frequency-domain representation of DAS beamformer is given
by taking DTFT of eq. (5.7) [92]. In particular,

D(ω) =
1
β

N

∑
i=1

wiXi(ω)e−jωτi = WHX(ω), (5.8)

where W =
1
β

N

∑
i=1

wie−jωτi , (5.9)

where wi is the elementwise weighting for the spatial window, β is the summation
of the weights, and W is the steering vector (optimized weight vector) of desired
linear phase shift and weights. The superscript H denote the Hermitian transpose.
In fact, it should be noted that it is due to this linear phase filtering, acoustic char-
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acteristics of replay are preserved in DAS beamformed signal. The D(ω) repre-
sents the frequency response of beamformed signal. In the framework of Wiener-
Khinchin theorem, the power at the output of the beamformer is estimated by
taking the Fourier transform of the autocorrelation function of the beamformer
output [93], i.e.,

p(ω) = E[|D(ω)|2], (5.10)

where E[·] is the expectation operator.

Figure 5.1: Functional block diagram of DAS beamformer having N the number
of microphones in array. After [9].

5.3.2 Minimum Variance Distortionless Response (MVDR)

MVDR beamformer achieves the speech enhancement by suppressing (ideally
nullifying) the reverberation effects introduced by the room acoustics [85, 94]. In
this approach, Signal-to-Noise Ratio (SNR) of the multi-channel audio signal is
significantly improved by minimizing the distortion (noise) [95]. For this formula-
tion, it is assumed that the audio signal from the reference source is distortionless,
which also results in preservation of all-pass characteristics. However, MVDR in-
creases the computational complexity of the system. The matrix for output power
p(ω) of MVDR beamformer is given by:

p(ω) = E[|D(ω)|2] = WHV(ω)W, (5.11)

where V(ω) and W represents the matrix of cross-power-spectral density and ini-
tial weight matrix, respectively. The co-variance matrix for L number of frames is
given by [91]:

V̂(ω) =
1
L

L−1

∑
l=0

Xl(ω)XH
l (ω), (5.12)
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where V̂(ω) is estimated co-variance matrix. The weights are optimized by mini-
mizing the noise with the constraint of unity gain for the desired signal, i.e.,

arg min
W

WH(ω)V̂(ω)W(ω),

subject to WH(ω)m = 1,
(5.13)

where m represents the steering vector, which is the most crucial matrix for di-
rection estimation of the desired signal. It provides the directional information of
microphone array. During this minimization, it affects the impulse response of the
acoustic medium. Let di be the desired direction representation for the element i.
Then, steering vector for ith element (i.e., mi) is given by:

mi = ejwdi . (5.14)

Constrained minimization in eq.(5.13) is performed by using Lagrange multipliers
[96]. Hence, the optimum weight matrix for MVDR beamformer is given by:

Wo(ω) =
V̂−1

(ω) m

mH V̂−1
(ω) m

. (5.15)

These optimum weights are utilized to obtain beamformed signal from the micro-
phone array signal, i.e.,

D(ω) = WH
o (ω)X(ω). (5.16)

Furthermore, the output power (po) of MVDR beamformer is given by:

po(ω) = WH
o (ω)V̂(ω)Wo(ω). (5.17)

5.4 Reverberation Analysis Using Time-Domain Rep-

resentation of Speech Signals

Fig. 5.2 shows the time-domain representation of genuine (Fig. 5.2(c)) and replay
(Fig. 5.2(d)) signals. The Fig. 5.2(a) and Fig. 5.2(b) represents the zoomed version
of the dotted squared region from Fig. 5.2(c) and Fig. 5.2(d), respectively. Further-
more, Fig. 5.2(e) and Fig. 5.2(f) corresponds to the zoomed version of the solid
squared region from Fig. 5.2(c) and Fig. 5.2(d), respectively. Hence, from this
zoomed figures, it can be observed that the replayed signal has additional im-
pulses and distortions as compared to the genuine speech, which are due to the
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added reverberation. This is in agreement with the other recent studies reported
in [39, 97].

Figure 5.2: Time-domain representation of (c) genuine and (d) replayed speech
signal from ReMASC dataset. Figure 5.2(a) and Figure 5.2(b) represents the
zoomed version of the dotted squared region and Figure 5.2(e) and Figure 5.2(f)
corresponds to the zoomed version of the solid squared region from Figure 5.2(c)
and Figure 5.2(d), respectively.

5.5 Experimental Results

The performance of DAS vs. MVDR beamformer is evaluated using % EER. The
SSD systems are developed for CQCC, LFCC, and TECC feature sets using GMM,
CNN, and LCNN-based classifiers for all the three datasets, i.e., ReMASC and its
DAS vs. MVDR beamformed versions. The % EER on development and evalu-
ation sets are shown in Table 5.1 for all the three variants of datasets. It was ob-
served that only static features performed better than all the other combinations.
Hence, all the results reported in Table 5.1 are obtained using only static features.
Furthermore, improved performance is obtained on the DAS beamformed dataset
than that for the original ReMASC and MVDR beamformed version, for all the
feature sets and classifiers considered in this study. This suggests that the DAS
beamforming can be potentially utilized to improve the performance of the re-
play SSD system for VAs. In addition, the TECC feature set performs better than
that of other feature sets for all the classifiers and all the dataset versions. This
proves the capability of TECC to extract the reverberation characteristics in re-
play speech signal. In particular, relatively the best performance is observed for
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TECC-GMM SSD system for DAS beamformed dataset. It should also be noted
that, results of MVDR are worse even than unprocessed (i.e., not beamformed)
ReMASC data indicating that MVDR is not all suitable beamforming for replay
SSD task.

Furthermore, the performance of all the systems are also shown using Detec-
tion Error Trade-off (DET) curves in Figure 5.3. In particular, Figure 5.3(a) and Fig-
ure 5.3(b) shows the DET curves for development and evaluation set, respectively,
for TECC-GMM system on all the three versions of datasets. It can be observed
from Figure 5.3 that the DAS beamformed ReMASC consistently performing well
as compared to ReMASC and its MVDR beamformed version for both develop-
ment and evaluation sets.

Table 5.1: Results (in % EER) on ReMASC and its DAS vs. MVDR beamformed
versions using various feature sets and classifiers. After [7].

Feature Set Dataset ReMASC MVDR DAS
Classifier Dev. Eval. Dev. Eval. Dev. Eval.

CQCC
GMM 19.94 22.56 36.74 30.73 16.86 21.67
CNN 15.36 25.33 30.84 29.95 12.12 22.38

LCNN 17.85 27.64 34.30 32.80 15.25 24.78

LFCC
GMM 22.39 23.38 35.53 30.47 20.06 21.66
CNN 15.04 25.27 28.67 28.12 12.13 20.13

LCNN 15.69 24.96 35.70 32.65 16.66 22.96

TECC
GMM 20.42 17.75 36.13 26.61 16.52 14.94
CNN 15.80 23.99 31.16 28.82 13.31 21.74

LCNN 15.90 23.86 36.03 31.56 14.71 22.56

Figure 5.3: DET curves for ReMASC and its beamformed versions using TECC
with GMM: (a) development set, and (b) evaluation set. After [7]

42



5.5.1 Analysis of Latency Period

In this study, we have analyzed the trade-off between % EER and latency period
(as shown in Figure 5.4), using TECC-GMM SSD system for development and
evaluation sets of ReMASC and its beamformed versions (i.e., DAS and MVDR).
The latency period of the trained model is estimated by computing the % EER
w.r.t. varying durations of test speech segment in a test utterance. For latency pe-
riod analysis, we chose the duration of the utterances varying from 20 ms to 2000
ms with an interval of 200 ms. It can be observed from the Figure 5.4 that even
for a short latency period, DAS is performing better than the other two versions
of datasets and hence, it shows the significance of DAS beamformer for practical
SSD system deployment for VAs.

Figure 5.4: Latency period analysis for TECC-GMM SSD system on ReMASC and
its DAS and MVDR beamformed versions. After [7].

5.6 Chapter Summary

This chapter presented the significance of DAS beamformer over MVDR for re-
play SSD task on VAs. This crucial observation found in this work is contradictory
w.r.t. suitability of state-of-the-art MVDR beamformer for Distant Speech Recog-
nition (DSR), indicating straightforward generalization of beamforming method
from DSR to replay SSD in VAs is not recommended even through DSR is very
much integral part of VAs. In addition, due to linear phase characteristics of
DAS beamformer, the acoustical characteristics of reverberation in replay spoof
are presented and hence, TECC is employed to capture these reverberation char-
acteristics. Performance comparison with the existing CQCC and LFCC feature
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sets indicates better performance offered by TECC. Finally, analysis of latency in-
dicates potential of DAS beamformer w.r.t. TECC-GMM for practical SSD system
deployment. Our future work will be directed to extend this work on the other
beamforming techniques, with the aim of capturing reverberation along with the
least possible latency.
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CHAPTER 6

Wavelet-Based Features for VLD

6.1 Introduction

In this chapter, the Morlet wavelet-based features for VLD via pop noise detec-
tion is proposed. With respect to Heisenberg’s uncertainty principle in signal pro-
cessing framework, wavelet-based approach offers improved resolution in time
and frequency as compared to the STFT-based method. Furthermore, Morlet
wavelets are known to capture perceptual cues effectively (both in visual and
hearing domains). To that effect, the use of Morlet wavelet to capture discrimi-
nating cues based on pop noise for genuine vs. replay spoof classification is being
proposed for the first time in this thesis. Experiments are presented for two CWT-
based features, namely, Handcrafted Morlet Wavelet and Low Frequency Morlet
Scalogram-based Features on POp noise COrpus (POCO) for VLD. 1

6.2 Continuous Wavelet Transform (CWT)

The effect of human breath on a microphone results in a sudden high energy (i.e.,
pop noise as an event in speech) in low frequency regions. To locate pop noise,
time-frequency representations, such as spectrograms, have been used in the re-
cent past [21, 53]. However, to get better detection of pop noise, we have used
CWT in this work. The key idea behind employing wavelet for pop noise detec-
tion is to exploit the capability of a wavelet (which is a wave for a short duration)
to capture transients in a speech wave, i.e., occurrence of pop noise. A mother
wavelet ψ(t) ∈ L2(R) (i.e., Hilbert space of finite energy signals) is a wave of
short duration that has zero average. It is defined as:

ψa,b(t) =
1√
a

ψ
( t− b

a

)
, a ∈ R+, b ∈ R, (6.1)

1This work is jointly done with PhD. scholar at DA-IICT, Ms. Priyanka Gupta.
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where b is called the translation (position), and a is called the dilation (scale) co-
efficient. There are various types of wavelets. The most famous wavelet is the
Morlet wavelet, which is a modulated Gaussian, and it is defined as [98]:

ψ(t) = ejω0te−t2/2, (6.2)

where ω0 is taken as 5 Hz for a standard Morlet wavelet. The Morlet wavelet
is obtained from a Gaussian window multiplied by a sinusoidal wave [99]. The
CWT of signal f (t) is

W f (a, b) =< f (t), ψa,b(t) >,

W f (a, b) =
1√
a

∫ ∞

−∞
f (t)ψ∗

( t− b
a

)
dt,

(6.3)

where < ·, · > indicates inner product operation to compute wavelet coefficients,
and ∗ denotes complex conjugate. We have considered Morlet wavelet in this
work because it is closely related to human perception (for both hearing and vi-
sion) [100]. Moreover, CWT is related to constant-Q filtering- a short-time analy-
sis performed by the peripheral auditory system. In particular, as per the original
investigations by Flanagan [101], the wavelet function, for the mechanical spec-
tral analysis performed by the basilar membrane in the human ear is given by
ψ(t) = (tω)2e−tω/2 [101]. Furthermore, Morlet wavelet is the most widely used
wavelet for CWT and, in fact, the first wavelet of its kind in formal historical de-
velopments of wavelets in the geophysics literature for detection of transients and
improving joint time-frequency resolution of seismic signals [102].

6.3 Proposed Approaches

The feature extraction for Spoofed Speech Detection (SSD) task is based on the
hypothesis that both genuine and spoof utterances possess differences w.r.t. pres-
ence and absence of pop noise energy levels, respectively. Fig. 6.1 shows the
scalograms of the word ’laugh’. A distinct signature of pop noise can be seen in
Panel I. However, the pop noise signature is not so distinct for the case, when a
pop filter was used as shown in Panel II of Figure 6.1.
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Figure 6.1: Panel I represent the case of presence of pop noise (genuine speech) in-
dicated by box. Panel II represents the case of reduced pop noise (spoofed speech)
due to the use of pop filter, (a) time-domain signal for the word ’laugh’, (b) corre-
sponding scalogram, and (c) corresponding low frequency (0− 40 Hz) scalogram.
Solid boxes in Panel I indicate the presence of pop noise, while corresponding
dotted boxes in Panel II indicates that the pop noise has been eliminated due to
pop filter.

6.3.1 Handcrafted Morlet Wavelet-Based Features

CWT coefficients are extracted from the speech data of POCO corpus by taking
Morlet as the mother wavelet. CWT coefficients are found for frequencies ≤ 40
Hz, as shown in Algorithm 2. Furthermore, to keep the dimension (D) of the
feature vector as 45 and also to extract the prominent energy of pop noise, the
energies are arranged in descending order, and the highest 45-D values are taken
for extracting the 45-dimensional feature vector.

6.3.2 Low Frequency Morlet Scalogram-Based Features

Scalogram is a visual time-frequency representation of CWT coefficients. In par-
ticular, it can be interpreted as a time-frequency energy density, |W f (a, b)|2 [99].
The time-frequency resolution of the wavelet transform depends on the frequency
of the signal. At high frequencies, the wavelet reaches a high time resolution but
a low frequency resolution. At low frequencies, high frequency resolution and
low time resolution can be obtained. Since pop noise most likely occurs at fre-
quency regions ≤ 40 Hz, scalograms are very well suited to extract energies at
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Algorithm 2: Proposed Handcrafted Morlet Wavelet-based Feature Ex-
traction for VLD. After [8].
1 Speech signal f (t) Feature w_name=‘amor’ // Taking Morlet wavelet
2 [cwt_coeffs, F]← cwt(f(t), w_name)
/* Finding CWT coefficients for low frequencies */

3 Low_F← find (0 < F ≤ 40 Hz)
Low_coeffs← cwt_coeffs (Low_F)

4 Pop_energy = abs (Low_coeffs)2

/* Converting pop energy to a 45 -D feature vector */
5 dim← 45
6 M=mean (Pop_energy)
7 SD=standard_deviation (Pop_energy)
8 k← length (Low_coeffs)
9 while k > 0 do

10 i = 1

11 Norm_Pop(i) = Pop_energy(i)−M
SD

12 k−− , i ++

13 [sorted, index]← sort (Norm_Pop, descending)
14 Feature← Pop_energy (index(1:dim))

low frequencies because of the higher frequency resolution of scalogram at lower
frequencies.

For our experiments, the lowest frequency bin is set at 1.9826 Hz. The scale
factor between 2 consecutive bins is 1.0718. Therefore, the kth bin index corre-
sponding to 40 Hz is calculated as:

40 = (1.0718)k ∗ 1.9826. (6.4)

Therefore, frequency region approximately below 40 Hz is found to be corre-
sponding to the nearest integer k = 44 frequency bins. Taking bin index below
k = 44, we get frequencies exactly below 41.9025 Hz. This is the region where
the pop noise is located. To that effect, scalogram images are extracted only corre-
sponding to 44 wavelet coefficients. Each scalogram image is of the size 512× 512.
These scalogram-based features are then fed as an input to the CNN.
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6.4 Baseline Approaches

6.4.1 Low Frequency Spectrogram-Based Features

Low frequency spectrogram-based features for VLD were extracted from the STFT
in [21]. The same algorithm was used on POCO dataset in [5]. In this work, en-
ergies only in the low frequency (in particular, < 40 Hz) regions were extracted
by selecting frequency bins corresponding to 0 to 40 Hz. Next, the average Seng

of the spectral energy densities of the STFT-based spectrogram was calculated by
averaging across the bins for every kth frame. For the framewise spectral energies
obtained in Seng, mean and standard deviation were calculated to obtain normal-
ized values. The frames with the 10 highest energies were selected to get mean-
ingful spectrogram-based features for pop noise detection. The classifier used was
Support Vector Machines (SVM).

6.4.2 CQT-Based Features

An improvement to the baseline was introduced in [56], using CQT-based fea-
tures. As compared to the STFT that has constant frequency resolution, CQT has
geometrically distributed frequency bins due to constant-Q ratio of center fre-
quency to resolution. The number of bins per octave is taken to be 96 and the
number of samples taken in the first octave is 2. Furthermore, fmin is set to 0.48
Hz and fmax is set to 11050 Hz. For classification, the study reported in [56] used
SVM-based classifier.

6.4.3 Mel Spectrogram-Based Features

Apart from our proposed CWT-based approach in this work, we also include the
use of Mel spectrogram (to our knowledge, this is not utilized for VLD task in
the literature) for the purpose of comparing our experimental results. We esti-
mated pop noise energies using the STFT-based approach on Mel Spectrogram
only on frequencies < 40 Hz. Therefore, we estimated the Mel spectrogram with
16 number of bands and 5400 as the FFT length for better frequency resolution.
Classification was done using a CNN-based classifier described in sub-Section
3.4.1.
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6.5 Experimental Results

This Section describes the experimental results for the proposed CWT-based fea-
tures for VLD task. Further analysis is done to investigate the effect of various
phonemes on the accuracy, by finding wordwise accuracies.

6.5.1 Proposed Handcrafted Morlet-Based Features

For the case of 45-D wavelet-based features (shown as system (F)), we achieved
an overall accuracy of 80 %. Fig. 6.2 shows wordwise accuracy over 44 words in
the dataset. We observed that the word ’pay’ has the highest accuracy of 91.02
%, because the word ’pay’ has a strong plosive sound of /p/. Furthermore, we
achieved an average accuracy of 79.35 % and 79.27 % on words with prominent
performance on plosive and fricatives, respectively, as shown in Table 6.1.

6.5.2 Proposed Morlet Scalogram-Based Features

The Morlet scalogram features (shown as system (G)) performed significantly well
as compared to the traditional STFT-based baseline system. We observed overall
accuracy of 86.23% on Morlet scalogram-based features. We observed that the
word ’tourist’ has the highest accuracy of 97.43%, because the word ’tourist’ has
2 strong plosive sounds of /t/. Given the effect of pop noise depends on the
uttered word, we achieved an average accuracy of 89.07% and 87.61% on words
with prominent plosive and fricatives, respectively.

Table 6.1: Average accuracy (in %) of different phoneme types. After [8].

Phoneme
Type

(A)
Spectrogram

(SVM)
[5]

(B)
CQT

(SVM)
[56]

(C)
Spectrogram

(CNN)
[55]

(D)
Mel-

spectrogram
(CNN)

(E)
Handcrafted

Bump
Wavelet-based

(CNN)
[57]

(F)
Handcrafted

Morlet
Wavelet-based

(CNN)
(Proposed)

(G)
Handcrafted

Morlet
Scalogram

(CNN)
(Proposed)

Freq. Range 0-40 Hz 0-11025 Hz 0-11025 Hz 0-40 Hz 0-40 Hz 0-40 Hz 0-40 Hz
Plosive 60.46 63.61 71.72 74.13 81.58 79.35 89.07
Fricatives 67.66 73.78 75.55 77.45 80.77 79.27 87.61
Whisper 68.44 73.29 76.83 74.99 81.09 79.48 86.21
Nasal 54.26 57.78 59.33 70.51 76.50 71.36 80.77
Liquids 69.78 57.16 56 69.23 69.87 65.38 79.49
Affricates 58.26 68.92 71.83 72.51 78.53 74.35 85.26

6.5.3 Discussion

It can be observed in Table 6.1 that our proposed Morlet scalogram-based ap-
proach outperforms every other methods for all the phoneme types. Further-
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Figure 6.2: Word wise accuracies (in %) with CNN classifier for (C): Full-
frequency spectrogram, (D): Low-frequency Mel-spectrogram, (E): Handcrafted
Bump wavelet-based features, (F): Handcrafted Morlet wavelet-based features,
and (G): Handcrafted Morlet scalogram. After [8].

more, we also observe that all the methods perform relatively better for plosive
and fricative sounds. Fricative sounds (such as, /f/ sound in the word ‘laugh’)
are produced due to turbulent airflow, which results in bursts of energy at low
frequencies for a short-time period, characterizing the presence of pop noise. Fur-
thermore, plosive sounds (such as, /p / sound in ‘pay’) are caused by a sudden
release of a burst of air from the lips, resulting in pop noise [75]. On the contrary,
energy distribution in nasal sounds is due to partial air released from the nostrils
and the mouth [75]. Since the released air is coming from two sources, it barely
results in energy at low frequency regions. To that effect, the accuracy score of all
the algorithms are relatively lower for the nasal sounds.

6.6 Chapter Summary

In this chapter, the CWT is used to effectively improved resolution in time and fre-
quency for VLD-based on pop noise. VLD enables to discriminate a live voice from
the other non-live voice signals, such as replayed, voice converted, and syntheti-
cally generated signals. To that effect, two handcrafted features were proposed in
this study: Morlet wavelet-based features, and Morlet scalogram-based features.
A significant improvement in accuracy is observed with both the features as com-
pared to the existing systems. Further analysis shows the effect of phoneme type
on the accuracy. However, the proposed approach comes with a trade-off between
high performance and computational complexity. Further, similar wavelet-based
methodologies can be tested for various configurations of spoof signals, as future
work. Furthermore, the combined effect of microphone variability on ASV and
pop noise-based VLD task can also be investigated. In the next chapter, the entire
thesis is summarized, along with limitations and potential research directions.
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CHAPTER 7

Summary and Conclusions

This thesis investigated the significance of quadrature phase for subband signals
of cochlear filterbank in the framework of CFCCIF-QESA feature extraction. Sig-
nificance of quadrature phase is motivated from the analysis of mutual informa-
tion (MI) for AM-FM signal and in the original definition of Fourier transform.
In order to incorporate quadratic phase, an analytic signal was generated using
Hilbert transform. The key idea behind this was to exploit the advantages of rel-
ative phase information and excellent temporal resolution of ESA to estimate IF
for each subband signal to derive the CFCCIF-QESA feature set. The develop-
ment of CFCCIF-QESA was motivated by the success of CFCC for mismatched
training and testing conditions and recent success of CFCCIF as winner system
for ASVSpoof 2015 challenge campaign and its recent follow-up work on using
CFCCIF-ESA for replay SSD tasks on ASVSpoof 2017 v2.0 dataset. The perfor-
mance of the proposed feature set was evaluated on ASVSpoof 2017 v2.0 and
BTAS 2016 datasets (both development and evaluation sets). The key motivation
for these intensive experiments on various datasets was to explore the generaliz-
ability of the proposed feature set to other datasets.

The another study presented significance of DAS beamformer over MVDR for
replay SSD task on VAs. This crucial observation found in this work is contra-
dictory w.r.t. suitability of state-of-the-art MVDR beamformer for Distant Speech
Recognition (DSR), indicating straightforward generalization of beamforming method
from DSR to replay SSD in VAs is not recommended even through DSR is very
much integral part of VAs. In addition, due to linear phase characteristics of DAS
beamformer, the acoustical characteristics of reverberation in replay spoof are pre-
sented and hence, TECC is employed to capture these reverberation characteris-
tics. Performance comparison with existing CQCC and LFCC indicates better per-
formance offered by TECC. Finally, analysis of latency indicates potential of DAS
beamformer w.r.t. TECC-GMM for practical SSD system deployment.

In the work done for VLD, we used CWT to effectively improved resolution
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in time and frequency. VLD enables to discriminate a live voice from the other
non-live voice signals, such as replayed, voice converted, and synthetically gener-
ated signals. To that effect, two handcrafted features were proposed in this study:
Morlet wavelet-based features, and Morlet scalogram-based features. A signifi-
cant improvement in accuracy is observed with both the features as compared to
the existing systems. Further analysis shows the effect of phoneme type on the
accuracy.

7.1 Limitations of the Thesis Work

• The proposed CFCCIF-QESA features does not yield improved performance
for neural network-based classifiers. Further parameter tuning can be done
to improve the performance for CNN and LCNN-based classifiers.

• proposed CFCCIF-QESA features do not yield improved performance than
CQCC baseline for ASVspoof 2019 PA dataset, because it contains simulated
replay utterances, unlike ASVspoof 2017 dataset which contains replay ut-
terances under realistic scenarios.

• The wavelet-based features gave relatively high accuracy as compared to the
baseline approach for VLD. However, the proposed approach comes with a
trade-off between high performance and computational complexity.

7.2 Future Research Directions

• The upcoming research efforts will be directed towards investigating the
significance of the proposed CFCCIF-QESA feature set on the other spoofing
attacks, such as VC and SS on ASVSpoof 2015, ASVSpoof 2019 challenge
dataset, and on the recently released DeepFake speech data of ASVSpoof
2021 challenge.

• Apart from CNN and LCNN used in this work, one can investigate the other
deep learning-based classifiers, such as ResNet and LSTM.

• The cross-database evaluation can be done to verify the generalizability of
CFCCIF-QESA feature set.

• For VLD systems, similar wavelet-based methodologies as proposed in this
work can be tested for various configurations of spoof signals. Furthermore,
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the combined effect of microphone variability on ASV and pop noise-based
VLD task can also be investigated.

• The future research direction for replay SSD on VAs is to extend presented
work on the other beamforming techniques, with the aim of capturing re-
verberation along with the least possible latency.
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CHAPTER A

MATLAB Pseudo Code

MATLAB code of main CFCCIF-QESA feature set

1 % clear all;clc;close all;

2 % main QESA feature set

3 function feat = feat_cfccif_complex_esa(x,fs)

4

5 P=1; L=0; H=fs/2; Q=80; Nc=12;

6 fc=linspace(L,H,Q+2); % make a Linear scale

7 fc=fc(2:end−1); % the central frequency of the ...

filters

8 fL=fc(1); % lowest cochlear filter's fc

9

10 a=fL./(fc); % scaling parameter => to shift ...

the center freq.

11 %t=0:1/fs:0.0375; % The time variable upto ...

half second

12 t=0:1/fs:0.05;

13 d=floor(20*fs/1000); % d=Window length(in ...

samples/ms)floor(d/2);

14 L=floor(8*fs/1000); % shift of window (in ...

samples/ms)

15 % No. of

16 % Parameters for the shape of filter and Theta

17

18 A=3; % Alpha value

19 B=0.016;

20 thetamin=Ttheta(Q,A,B,fL,t);

21 %% Design the cochlear Filters

22 % Start proceesing for each filter bank output

23 for i=1:Q

24

25 c1 = 1./sqrt(a(i));

26 c2 = (t/a(i)).^A.*exp(−2*pi*fL*B*(t/a(i)));
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27 c3 = cos(2*pi*fL*(t/a(i))+thetamin);

28 Si = c1.*c2.*c3;

29

30 Tab = conv(x,Si);

31 CTab=hilbert(Tab);

32 %% The function of implementation of 1D motion of BM ...

(unidirectional)

33 hab = (Tab).^2;

34 %% Hair cell output of each band==> i.e., representation ...

of nerve spike density

35

36

37 % Ti=3.5*(1./fc)*fs; d=max(3.5*ti,d)

38

39 j=1;

40 ss=zeros();

41 inst_freq=zeros();

42

43 for l=1:L:(length(x)−d+1) % Last few frames are discarded.

44 b=l:l+d−1;

45 inst_freq(1,j) = inst_freq_newmethod_complex(CTab(b),d);

46 ss(1,j)=sum(hab(b))/d;

47 j=j+1;

48 end

49

50 %S(i,:)=ss; % This is the nerve spike ...

density

51

52 M=inst_freq.*ss;

53 SN(i,:)=log(abs(diff(M)));

54 %% Nonlinearity, it can be either be log/cube root/ any ...

other nonlinearty

55

56 %SN(i,:)=log(ss);

57 clear c1 c2 c3 Si Tab hab M

58 end

59

60

61 %%Discrete Cosine Transform

62

63 Ydct=dct(SN);

64 cfcc=Ydct(:,2:Nc+1);

65

66 [¬,nanC] = find(any(isnan(cfcc)));

67 cfcc(:,nanC) = [];

69



68 [¬,infC] = find(any(isinf(cfcc)));

69 cfcc(:,infC) = [];

70

71 % ∆=∆s(cfcc,3);

72 % double_∆=∆s(∆,3);

73 % cfcc = [cfcc;∆;double_∆];

74 % cfcc = cmvn(cfcc, 'true');

75 feat = cfcc;

76

77 end

MATLAB code of IF estimation from QESA

1 function freq = inst_freq_newmethod_complex(x,c)

2 % zero = [0];

3 % y = [zero;x];

4 y=x;

5 d= diff(y);

6 num = [(1− (ESA(real(d))+ESA(imag(d)))) 0];

7 den=(2*ESA(real(x))+ESA(imag(x)));

8 arg=num./den;

9 freq = arg;

10 freq = sum(abs(acos(arg)))/c;

11 end

MATLAB code of ESA algorithm

1 function ESA = si(x)

2

3 for i=2:length(x)−1

4 si(i−1) = x(i)*x(i)−x(i−1)*x(i+1);

5 end

6 ESA = si;

7 end
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