Automated Analysis of Natural Language
Textual Specifications

Conformance and Non-Conformance with Requirement Templates (RTs)

by

SHIVANI BALWANI
202111022

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in
INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

July, 2023

Declaration

I hereby declare that

i) the thesis comprises of my original work towards the degree of Master of
Technology in Information and Communication Technology at Dhirubhai
Ambani Institute of Information and Communication Technology and has
not been submitted elsewhere for a degree,

ii) due acknowledgment has been made in the text to all the reference material

used.

@V

Shivani Balwani

Certificate

This is to certify that the thesis work entitled Automated Analysis of Natural Lan-
guage Textual Specifications has been carried out by Shivani Balwani (202111022)
for the degree of Master of Technology in Information and Communication Tech-
nology at Dhirubhai Ambani Institute of Information and Communication Technology

w
l \ v\‘-’ \ : }

Dr. Sa\urabh Tiwari
Thesis Supervisor

Acknowledgments

I wish to express my sincere gratitude to all those who have contributed to the
completion of this work. Firstly, I would like to thank my supervisor, Prof. Saurabh
Tiwari, for his valuable guidance, constructive feedback and unwavering support
throughout my research work. Without his continuous guidance and trust, this
thesis would not have reached its conclusion. He was always there to lead me
towards the solution whenever I got stuck.

Furthermore, I am grateful to the Indian Space Research Organisation (ISRO)
for its funding of this research project. I would also like to acknowledge the
Dhirubhai Ambani Institute of Information and Communication Technology for
providing me with the resources, facilities, and opportunities necessary to carry
out this research. Additionally, I would like to extend my gratitude to Prof. Sour-
ish Dasgupta for his invaluable guidance during the experimentation and analysis
phase of my thesis, as his expertise has been pivotal in shaping the direction of
my research.

Finally, I would like to express my gratitude to my family and friends for their
constant support, encouragement, and understanding throughout this journey.

Contents

Abstract

List of Principal Symbols and Acronyms

List of Tables

List of Figures

1 Introduction

1.1
1.2
1.3

1.4
1.5

Natural Language Textual Specifications

Objective and Problem Description

Thesis contribution

1.3.1
1.3.2
1.3.3
1.3.4

Automated Conformance Checking withRTs
Automated Recommendations for Non-Conforming FRs . .
Automated Assessment of Testability for NFRs
ToolSupport

Overall Analysis of the Requirement Document: Flow Graph

Organisationof theThesis

2 Background of Requirement Templates
21 Analysisof RTs
22 EARStemplate
23 RUPPstemplate

3 Literature Review

3.1
3.2
3.3
34

NLP in Requirement Engineering
Identification of Ambiguitiesin NLtext
Requirement Templates

Non-Functional Requirements

iii

vi

vii

viii

O W W W W W NN = -

4 Automated Conformance Checking of Functional Requirements to RTs 17
41 NLP PipelinetoprocessFR 17
42]JAPE Rules for Conformance Checking 19

5 Automated Recommendation System for Non-Conformance Requirements 23

5.1 JAPE Rules for Providing Recommendations 23

6 Automated Analysis of Non-Functional Requirements 27
6.1 Testability of Non-Functional Requirements 27
6.2 Acceptancecriteria 0 oL 28
6.3 NLP PipelinetoprocessNFRs 29
6.4 JAPE Rules for detecting the Acceptance criteriain NFRs 31

7 Tool Support 33
71 Introduction 33
7.2 Architecture and Demonstration of thetool 33

8 Experimentation & Results 42
8.1 Selectionofcasestudies 42
8.2 Manual examination of the case studies 42
8.2.1 Algorithm for Conformance Checking 42

8.2.2 Algorithm for Verifying Testability 43

83 Analysis&Results 4
831 ConformanceFRs......................... 4

83.2 Non-ConformanceFRs. 45

83.3 Recommendations 48

8.3.4 Testable/Non-Testable NFRs 51

9 Conclusion and Future work 54
References 55

iv

Abstract

Natural Language (NL) is widely adopted as the primary method of expressing
software requirements, although determining its superiority is challenging. Em-
pirical evidence suggests that NL is the most commonly used notation in the in-
dustry for specifying requirements. One of the main advantages of NL is its ac-
cessibility to various stakeholders, requiring minimal training for understanding.
Additionally, NL possesses universality, allowing its application across diverse
problem domains. However, the unrestricted use of NL requirements can result
in ambiguities. To address this issue and restrict the usage of NL requirements,
Requirement Templates (RTs) are employed. RTs have a fixed syntactic structure
and consist of predefined slots. When requirements are structured using RTs, en-
suring they conform to the specified template is crucial.

Manually verifying the conformity of requirements to RTs becomes a tedious
task due to the large size of industry requirement documents, and it also intro-
duces the possibility of errors. Furthermore, rewriting requirements to conform
to the template structure when they initially do not conform presents a significant
challenge. To overcome these issues, we propose a tool-assisted approach that
automatically verifies whether Functional Requirements (FRs) conform to RTs.
It provides a recommendation for a Template Non-Conformance (TNC) require-
ment by generating a semantically identical requirement that Conforms to the
template structure. Our study focused on two well-known RTs, namely, Easy Ap-
proach to Requirements Syntax (EARS) and RUPPs, for checking conformance
and making recommendations. We utilized Natural Language Processing (NLP)
techniques and applied our approach to industrial and publicly available case
studies. Our results demonstrate that the tool-based approach facilitates require-
ment analysis and aids in recommending requirements based on their conformity
with RTs. Furthermore, we have developed an approach to assess Non-Functional
Requirements (NFRs) testability by analyzing the associated acceptance criteria.
We evaluated the applicability of this approach by applying it to various case
studies and determining the testability of the NFRs.

List of Principal Symbols and Acronyms

EARS Easy Approach to Requirements Syntax
FN False Negative

FP False Positive

FRs Functional Requirements

GATE General Architecture for Text Engineering
JAPE Java Annotation Patterns Engine

LHS Left-Hand Side

NFRs Non-Functional Requirements

NL Natural Language

NLP Natural Language Processing

POS Part-Of-speech

RHS Right-Hand Side

RTs Requirement Templates

SRS Software Requirements Specification
TC Template Conformance

TN True Negative

TNC Template Non-Conformance

TP True Positive

vi

List of Tables

51

6.1

8.1
8.2
8.3
8.4
8.5

Non-Conformance requirements with recommendations generated

bytheapproach, 25
Acceptance-Criteria concepts description 29
Accuracy results for TC requirements 46
Accuracy results for TNC requirements 47
Accuracy results for Recommendations 49
Two iterations for partially correct recommendations 51
Accuracy results for NFR testability checking 52

vii

List of Figures

1.1

2.1
22

23
24

4.1
4.2

4.3

51

6.1
6.2

6.3

7.1
7.2
7.3
74
7.5
7.6

8.1
8.2
8.3
8.4

ApproachFlow Graph 4
EARSTemplate [33] 10
Example requirements showing Conformance/Non-Conformance

toEARS 11
RUPPs Template [43] 12
Example requirements showing Conformance/Non-Conformance

toRUPPs e 12
NLP Pipelinefor FR. 18
Example requirements with the annotations generated after run-

ningtheJAPEfile 21
JAPE Rule for EARS Ubiquitous requirement 22
JAPE Rule to identify Conditional details 26
NLP PipelineforNFRs 30
Example NFRs with the annotations generated after the processing

of NLP Pipeline 31
JAPE Rule for the ‘Limit” Acceptance CriteriaClass 31
GATEcomponents 35
GATE Framework utilized for FR conformance checking 36
GATE Framework utilized for NFRs testability checking 37
Wrapper tool utilized for FR conformance checking 39
Wrapper tool utilized for NFR testability checking 40
Architectureof thetool 40
Confusion Matrix for conformance requirements 45
Confusion Matrix for Non-Conformance requirements 46
Complex Noun identification problem 50
Confusion matrix for measuring accuracy of testability checking . . 52

viii

CHAPTER 1

Introduction

1.1 Natural Language Textual Specifications

Ensuring high-quality software is a critical step in today’s technology-driven world.
An essential aspect of achieving software quality lies in establishing accurate and
unambiguous software requirements. Conventionally, NL text serves as the pre-
dominant means of expressing software requirements due to its universal acces-
sibility and familiarity [43]. The significance of NL in specifying requirements
has been firmly established through extensive research [47][50]. Although it is
challenging to definitively establish NL as the optimal choice, empirical evidence
gathered over the years has consistently demonstrated that it is the most preva-
lent notation used for expressing requirements in industrial practice [36][31]. Its
accessibility allows stakeholders from diverse backgrounds and expertise to con-
tribute and comprehend the desired functionalities and features.

When individuals use NL text without following any specific rules or regula-
tions, the inherent flexibility of NL can introduce unintended ambiguities into the
requirements. These ambiguities have the potential to cause misunderstandings,
misinterpretations, and misalignments throughout the software development life-
cycle. Ambiguities can arise due to unclear words or phrases, inconsistent sen-
tence structures, vague terminology, or misunderstandings of the context, making
it challenging to comprehend and capture the precise specifications and objectives
of a software system. Consequently, developers may unintentionally create soft-
ware with incorrect features, resulting in poor performance, dissatisfied users,
and even critical system failures. Bruijn et al. [21] conducted research on the
impact of highly ambiguous requirements documents on project success. In or-
der to minimize these risks and uphold the desired quality standards, it is crucial
to implement measures that specifically target the ambiguities and uncertainties
associated with NL requirement specifications.

1.2 Objective and Problem Description

Introducing a level of formality and precision to requirements can help eliminate
or minimize potential ambiguities, thereby enhancing the clarity and accuracy
of the software requirements. Several strategies to improve quality involve im-
plementing rigorous techniques, such as formal language specification, domain-
specific modeling languages, or structured frameworks for requirements docu-
mentation. One such structured framework that plays a pivotal role in ensuring
consistency, clarity, and completeness during the capture and communication of
software requirements is the use of RTs [42].

RTs are predefined structures employed to specify and document software
requirements. These templates consist of various slots or fields that serve as
designated spaces for capturing specific information related to the requirements
[42]. Using templates, requirements become more amenable to automated analy-
sis, such as semantic consistency checking and model transformation [18][57][43].
There is evidence of support for requirements templates in requirements author-
ing and management tools [49], which suggests a broader industrial interest in
templates and the quality assurance activities associated with their use. Further-
more, using RTs eliminates the required training overhead.

When utilizing RTs, analysts must ensure that the templates are correctly im-
plemented. Manual verification of Template Conformance (TC) for large sets of re-
quirements can be time-consuming and prone to errors [43], especially when mul-
tiple stakeholders are involved. Moreover, the task becomes challenging when it
needs to be performed repeatedly in response to requirement modifications. Sim-
ilarly, manually transforming TNC requirements into TC is a laborious process. It
requires rewriting the requirement document and repeatedly checking it for con-
formity to the template. This process is time-consuming and may involve examin-
ing multiple document versions before achieving the desired level of conformity.

To address these issues, we propose an approach that involves two primary
tasks: the first task entails automatically checking TC, while the second task in-
volves recommending a semantically identical TC version for a TNC requirement.

1.3 Thesis contribution

The major contributions of the thesis are:

1.3.1 Automated Conformance Checking with RTs

The proposed comprehensive approach enables the automatic classification of re-
quirements based on their conformity to the EARS and RUPPs Template in a more
efficient and streamlined manner. To assess the Conformance of FRs with spec-
ified Templates, We used an NLP Pipeline equipped with distinct NLP modules
and a rule-based pattern matching technique known as ‘Java Annotation Patterns

Engine (JAPE)’, which allows for an effective assessment of FRs.

1.3.2 Automated Recommendations for Non-Conforming FRs

Once the requirements are identified as non-conforming, we employ JAPE Rules
to analyse the underlying causes of Non-Conformance for each requirement. Sub-
sequently, utilizing JAPE, automatic recommendations are generated to resolve
the identified Non-Conformance issues.

1.3.3 Automated Assessment of Testability for NFRs

The provided approach automatically identifies the acceptance criteria within the
NEFRs and classifies the requirements as either Testable or Non-Testable based on
the presence of acceptance criteria. To accomplish this, an NLP Pipeline, in con-
junction with JAPE Rules, has been employed to extract the pattern of acceptance
criteria within the NFRs.

1.3.4 Tool Support

We have developed tool support for automated testability checking, conformance
checking, and providing recommendations for the Non-Conformance require-

ments with RTs.

1.4 Overall Analysis of the Requirement Document:
Flow Graph

Our proposed approach flow is shown in Figure 1.1, involves a systematic pro-
cedure for checking the Conformance of FRs to RTs. The approach involves the

following steps:

1. NLP Pipeline to process FR: The FRs from the document undergo a se-
quential processing pipeline consisting of different NLP modules. The result

3

=

NL Requirement Document

4 4

/ / /’ /
Functional Non-Functional
requirements requirements
4 Y
NLP Pipeline NLP Pipeline
to process FR to process NFR

A4 Y
JAPE Rules for
Conformance
checking

' i

YES

JAPE Rules to detect
Acceptance criteria

NO

h 4

A4
/

\ 4 A4
e — — 7 /
Annotate Annotate / Annotate as Annotate as
asTC as TNC Testable Non-Testable

A 4

JAPE Rules to
Provide
Recommendations

Y
/
Recommendations
for TNC

Figure 1.1: Approach Flow Graph

of this pipeline is the extraction of tokens, sentences, Part-Of-Speech (POS)
tags, and other relevant linguistic information from the document.

. JAPE Rules for Conformance Checking: JAPE Rules are employed to an-
notate distinct slots of EARS/RUPPs template structure within the require-
ment and verify conformance of requirements to the specified template struc-
ture. Based on these rules, if a requirement’s slots align with the confor-
mance pattern rule of the specified template, it is labelled as "TC’. Otherwise,
it is classified as "TNC’.

. JAPE Rules to Provide Recommendations: In cases where the requirement
does not conform to the prescribed template structures, JAPE Rules are em-
ployed to generate a recommendation. This recommendation entails a mod-

4

ified version of the requirement that conforms with the template structure.
The determination of the recommendation is based on the nature of Non-
Conformance, which is assessed through the application of JAPE Rule pat-

terns.

By employing this approach, the verification of Testability for NFRs can be
achieved through the following steps:

1. NLP Pipeline to process NFRs: Initially, the NFRs undergo a sequential pro-
cessing phase involving various NLP modules. These modules analyze the
NFRs to extract linguistic information such as tokens, sentences, numbers,
measurements, and other relevant elements.

2. JAPE Rules for acceptance criteria detection: The linguistic information de-
rived from the aforementioned NLP Pipeline is subsequently utilized within
the JAPE Rules patterns. These patterns enable the identification and detec-
tion of acceptance criteria within the NFRs. If the NFR includes acceptance
criteria, it is categorized as Testable. Conversely, if the NFR lacks such ac-
ceptance criteria, it is classified as Non-Testable.

By executing these steps, the proposed approach facilitates the verification of
the Testability aspect for NFRs. The NLP Pipeline aids in extracting linguistic fea-
tures, while the application of JAPE Rules enables the identification of acceptance
criteria embedded within the NFRs.

1.5 Organisation of the Thesis

The thesis is structured into distinct chapters, each focusing on a specific aspect.
In Chapter 2, we explore the background of RTs by conducting an analysis of the
existing available RTs. Additionally, we provide a detailed discussion of the spe-
cific RTs utilized in this study, namely the EARS and RUPPs templates. Chapter
3 delves into the literature review and related work, providing a comprehensive
overview of existing research. In Chapter 4, we explain the approach for automat-
ing the conformance checking of FRs to RTs. Chapter 5 presents our approach
for an automated recommendation generation system specifically designed to ad-
dress TNC requirements. In Chapter 6, we discuss our approach for automating
the testability checking of NFRs using the acceptance criteria. The features and
architecture of the tool, along with a demonstration, are discussed in Chapter 7.
In Chapter 8, we delve into the experiment conducted to obtain and analyze the

5

results that form the basis for evaluating the tool and the work presented in this
thesis. This chapter offers valuable insights into the practicality and effectiveness
of the tool. Lastly, Chapter 9 concludes the thesis, summarizing the key findings
and contributions while discussing potential avenues for future research and de-
velopment.

CHAPTER 2

Background of Requirement Templates

Requirement Templates (RTs) serve as valuable tools for requirement engineers
in specifying various types of requirements, encompassing both Functional and
Non-Functional aspects. By providing a structured framework for expressing re-
quirements in NL, RTs help mitigate the ambiguities that often arise when using
unrestricted NL [43]. In this chapter, we will delve into a discussion of the RTs
that are already available, examining their applicability and benefits in address-
ing various requirements engineering challenges.

2.1 Analysis of RTs

Numerous RTs have been proposed by researchers, each offering distinct rele-
vance and significance to specific domains of requirements. We begin our ex-
ploration with a template that focuses on the specification of general application
FRs. One notable template in this category is the one developed by Chris Rupp
[43]. RUPPs template adopts a unique approach, utilizing verbs to designate the
functionalities and actions of the system. This approach enhances the clarity and
precision in capturing the FRs of the application. Another important template in
the realm of requirement engineering is the I-star template, introduced by author
Eric S. K. Yu [59]. The I-star template serves as a modeling technique specifically
applied during the early phases of requirement engineering. The I* framework
utilizes a graph-based approach to construct visual strategic models.

In addition to specifying FRs using the aforementioned template, it is equally
crucial to address the Non-Functional aspects of requirements. Non-Functional
specifications are majorly needed in applications that require safety-critical and
security-related aspects. In the existing literature, several notable templates have
been proposed specifically for specifying requirements in the context of safety-
critical applications. These templates have gained popularity and serve as valu-

able resources for effectively capturing the requirements associated with safety-

critical applications. The EARS template is widely recognized as a valuable tool
for specifying requirements that adhere to safety criteria. It employs basic syntac-
tic thumb rules to ensure clarity and consistency in the specification process. For
instance, the use of "when" is employed to denote event-driven behaviour, "while"
for state-driven behaviour, and "if-then" statements to address potential failures
[33]. These conventions provide a structured framework for expressing safety-
related requirements effectively. In addition to the EARS template, Antonino pro-
posed another template [39] that introduces additional features for specifying pa-
rameterized safety requirements. While the EARS template serves well for speci-
fying high-level stakeholder requirements, it falls short in ensuring the traceabil-
ity of safety requirements from an architectural perspective. Antonino’s template,
on the other hand, tackles this issue by introducing a structured approach. An-
tonino’s template emphasizes the significance of Top-Level Safety Requirements
as a starting point, followed by templates for safety requirements at the func-
tional level. Finally, it provides templates for specifying safety requirements at
the technical level, encompassing both software and hardware artefacts [39]. This
comprehensive approach enables a more systematic and granular representation
of safety requirements, facilitating better traceability and integration within the
overall architectural context.

In recent times, software system security has emerged as a critical concern,
underscored by numerous reported incidents exploiting software vulnerabilities
and posing threats to systems. These threats encompass activities such as unau-
thorized access to sensitive information, data manipulation, and the potential for
denial-of-service attacks. Given the gravity of these risks, it is imperative to incor-
porate security considerations right from the initial phases of requirement mod-
eling for system software. To address these security requirements effectively, sev-
eral templates have been developed and utilized. We explored a selection of these
templates, starting with the template proposed by Firesmith [24]. Firesmith’s se-
curity template adopts a parameterized and reusable approach specifically de-
signed to handle security parameters within the system. This template revolves
around identifying valuable assets (such as data and servers), different attacker
types and the associated threats to the assets. Another notable template pro-
posed for specifying security requirements is the Riaz’16 template [46]. Riaz’s
template offers comprehensive coverage of essential security aspects by account-
ing for requirements related to confidentiality, integrity, availability, authentica-
tion, accountability, and privacy. In contrast, Kamalrudin’s work on specifying

security requirements introduces a unique approach [30]. Kamalrudin et al. de-

veloped a security requirements library named SecLab, which encompasses a
comprehensive collection of predefined security properties such as confidential-
ity, integrity, and more. These properties can be seamlessly incorporated within
a textual template structure, enabling efficient and accurate specification of secu-
rity requirements. In his review paper titled "A Comparative Study of Proposals
for Establishing Security Requirements for the Development of Secure Informa-
tion Systems" [34], Mellado et al. present a comprehensive comparative analysis
of eight security RTs. Their study assesses the templates based on multiple crite-
ria, including their degree of agility, user-friendliness, degree of integration, help
support, and overall contributions.

Considering the aforementioned RTs and their applicability, we have selected
the EARS template and RUPPs template for the conformance checking of FRs.
These templates demonstrate a correlated and straightforward syntax, rendering
them well-suited for conformance checking to utilize NLP techniques. Further-
more, these templates have extensive industry usage, as indicated by various
studies [54], and there are readily available practitioner guidelines for their uti-
lization. This combination of factors positions the EARS and RUPPs templates as
highly suitable options for automating the conformance checking of requirements
and generating recommendations for TNC requirements.

2.2 EARS template

The EARS template, depicted in Figure 2.1 [33], encompasses a comprehensive
framework for composing requirement sentences. Within this template, each sen-
tence contains four distinct slots:

1. An optional initial condition serving as a starting point.
2. The system name specifies the particular system under consideration.

3. A modal verb (SHALL)

4. The system response details the intended behaviour or actions of the sys-

tem.

EARS incorporates five diverse alternative structures within its first slot. These
structures are employed to differentiate between various requirement types, thereby
enhancing the versatility and applicability of the template.

1. Ubiquitous requirements: These requirements are forever active and do not
rely on any preconditions.

2. Event-driven requirements: These requirements come into play when the

trigger event occurs. They are activated by a specific event denoted by the
term "WHEN".

3. Unwanted behaviour requirements: These requirements capture undesired

scenarios or conditions. They begin with the conditional keyword "IF’.

4. State-driven requirements: Designed for active requirements within a par-

ticular state. These requirements initiate with "WHILE".

5. Optional feature requirements: Referred to as requirements that must be

fulfilled when specific optional features are present. These requirements
begin with the word "WHERE".

WHEN |—

<Optional
precondition>

<trigger>

<Optional
precondition>

<trigger>

THEN

WHILE

<in a specific state>

<System Name>

SHALL

4|<System Respone>

WHERE

<feature is included>

Figure 2.1: EARS Template [33]

In Figure 2.2, two requirements, R1 and R2, are presented. It is apparent that

R1 and R2 share the same meaning, but R2 conforms to the "Unwanted behavior
requirement’ type of EARS while R1 does not follow the EARS Template struc-
ture. Within R2, all the fixed components of the EARS Template are expressed in
capital letters. The Non-Conformance of R1 to the template can be attributed to

two reasons: 1) The usage of the term "MUST" instead of the specified keyword

'SHALL" and 2) The condition fragment is not positioned at the beginning of the

requirement.

2.3 RUPPs template

As illustrated in Figure 2.3, The RUPPs template [43] incorporates six distinct

components within a single requirement sentence. These components are as fol-

lows:

10

R1:

R2:

The system must display an error message indicating a login failure if the user
attempts to log in with an incorrect password.

<Tri&ger> <System name>

. 3
IF the user attempts to log in with an incorrect password, THEN the system

SHALL display an error message indicating the login failure.
L J

-
<System response>

Figure 2.2: Example requirements showing Conformance/Non-Conformance to
EARS

1.

2.

3.

5.

6.

An optional condition, positioned at the beginning.
The name of the system.

A modal verb (such as "shall," "should," or "will") indicates the level of im-
portance of the requirement. Here are examples of how the modal verbs can
be used in the RUPPs template:

¢ Shall: The system shall generate an automated monthly report for the
finance department. (This requirement is mandatory and must be im-
plemented.)

* Should: The system should provide an option to save user preferences
for future sessions. (This requirement is recommended but not manda-
tory.)

e Will: The system will display real-time notifications to users when new
messages arrive. (This requirement expresses a future action that the
system will perform.)

The required processing functionality, which can take on three different forms
depending on how the functionality is intended to be provided.

The object for which the functionality is being described.

Optional additional details about the object.

The three alternatives for the fourth component capture the following;:

* <process>: This alternative is used for capturing functions that the system

performs without user interactions. These functions are commonly referred

to as autonomous requirements.

11

* PROVIDE <whom?> WITH THE ABILITY TO <process>: This alterna-
tive is employed to capture functions that the system provides to specific

users, which are commonly referred to as user interaction requirements.

* BE ABLE TO <process>: This alternative is employed for interface require-
ments, which capture the functions performed by the system in response to
trigger events initiated by other systems.

SHALL <process=
<when?> \/ PROVIDE <whom?> - ;
<under what —— <system name= SHOULD WITH THE ABILITY —— <object> — <a::::c:r:’a;j:3>aus
conditions?> TO <process=
Ootional Optional
1
p WILL BE ABLETO
<process=

Figure 2.3: RUPPs Template [43]

In Figure 2.4, two requirements, R3 and R4, are displayed. It is evident that
R3 conforms to the "autonomous requirement’ type of RUPPs, while R4 does not
conform to the structure of the RUPPs Template. In R3, all the fixed components
of the RUPPs Template are expressed in capital letters. The Non-Conformance of
R4 to the template can be attributed to the fact that the condition fragment, "IF the
User has no other option," is not placed at the beginning of the requirement.

Condition System name
o

r 0 R
When a user selects the option to join an existing game, the MultiMahjongClient WILL

o retriev La list of any gamejs Ehat still require players from the MultnMahjongServeJr,
“—‘r—f T T
Process Object Additional details

R4: The MultiMahjongClient will automate the picking up of a tile from the

wall If the user has no other option.

Figure 2.4: Example requirements showing Conformance/Non-Conformance to
RUPPs

12

CHAPTER 3

Literature Review

3.1 NLP in Requirement Engineering

The field of NLP has a lengthy history of application in Requirements Engineer-
ing. It has been deduced that the utilization of NLP techniques and tools has
proven to be greatly advantageous in expediting the Software Requirements En-
gineering process [38]. This can be attributed to the widespread use of NL in the
outlining and definition of requirements. NLP can be effectively employed to an-
alyze the initial software requirements with the aim of accomplishing objectives
such as requirement prioritization and classification into categories of FRs and
NFRs. Sharma et al. [51] developed an automated framework to identify NFRs
in NL requirements. Their approach involves extracting multiple features, repre-
sented as pattern-based rules, and the subsequent identification of NFRs based on
specific combinations or relationships among these features.

NLP techniques are also utilized in Quality Assurance (QA) procedures for
requirements [20][40][29][25]. In their research, Genova et al. [25] presented mul-
tiple indicators aimed at assessing the quality of textual requirements, comple-
mented by a fully automated tool [9] designed to calculate these quality measures.
Fabbrini et al. [20] developed a Quality Model that can be applied to assess re-
quirements and eradicate any ambiguities or incompleteness. The authors have
developed a tool QuARS consisting of NLP modules like a lexical and syntax an-
alyzer. Ormandjieva et al. [40] presented an automatic approach to assessing
the quality of textual requirements using NLP in all the phases of the Software
Development Life Cycle (SDLC). In NLARE [29], authors propose a set of guide-
lines for promoting a disciplined sentence structure for expressing requirements.
By adhering to these guidelines, NLP techniques can be effectively leveraged to
evaluate the quality of the requirements.

The conversion of software requirements from NL to a more formal specifi-

cation has the potential to reduce their inherent ambiguity and incompleteness.

13

Numerous studies [8][37][23][55][28] have focused on utilizing NLP techniques
to transform NL requirements into formal specifications. The authors Ibrahim et
al. [8] have presented a method that utilizes NLP and Domain Ontology tech-
niques to support the analysis of textual requirements and the extraction of class
diagrams. More et al. [37] proposed an approach to extract Unified Modeling Lan-
guage (UML) diagrams from textual requirements. The methodology employs
various NLP technologies such as OpenNLP Parser, Word Net, Concepts Extrac-
tion Engine, and Domain Ontology. Hamza et al. [28] have devised a method-
ology that employs various NLP techniques, such as tokenization, stemming,
POS tagging, and chunking, to generate a UML use case diagram from textual
requirements. Few studies [23][55] have also investigated the use of automated
approaches utilizing NLP techniques for transforming NL textual requirements
into object-oriented (OO) specifications.

3.2 Identification of Ambiguities in NL text

For quite some time, requirements engineers have acknowledged the significant
challenge posed by ambiguity when it comes to specifying and constructing soft-
ware systems [48]. Ambiguity can give rise to various issues that impact the sys-
tem, as it essentially becomes a bug if left undetected and unresolved during the
early stages. According to the findings of Berry et al. [14], it has been found
that "In reality, it is impossible to eliminate ambiguity entirely, and thus, we must
develop the ability to identify it." Therefore, the identification and correction of
ambiguous requirements should be regarded as the foremost priority. Extensive
research has been conducted over the years to address the detection of ambiguities
in software requirements. Zait et al. [60] presented an approach to identify lexical
and Semantic ambiguities in requirements and provide all the possible interpre-
tations of the requirements to the Requirement analysts. The authors Chantree et
al. [15] introduced a novel and scalable technique that effectively notifies require-
ment authors about the existence of potentially risky ambiguities. Osama and
co-authors presented an efficient automatic syntactic ambiguity detection tech-
nique for NL requirements [41]. Their technique utilizes the Stanford CoreNLP
library to filter the potential scored interpretations of a given sentence. Further-
more, it offers users feedback by presenting the possible correct interpretations
to address the identified ambiguity. In their work, Kiyavitskaya, Nadzeya, et al.
[32] introduced a two-step tool-supported methodology that aims to detect am-
biguities within NL requirements specifications. The first step applies a range of

14

ambiguity measures to the Requirements to identify sentences that potentially ex-
hibit ambiguity. In the second step, the tool provides an analysis of the specific
aspects that may contribute to ambiguity within each identified sentence. Yang et
al. [58] introduced an approach aimed at automatically identifying harmful ambi-
guities that arise when readers interpret requirements differently. Their approach
detects and addresses ambiguities that can lead to misunderstandings or conflicts
among different stakeholders.

3.3 Requirement Templates

Several works of literature in the field of Requirement Engineering have exten-
sively examined the utilization of RTs. In a research paper titled "On systemat-
ically building a controlled natural language for functional requirements" [56],
authored by Alvaro Veizaga et al., a methodology is presented for defining Con-
trolled Natural Languages (CNLs) that can effectively express FRs. As a result of
this methodology, a tool called Rimay was developed. Rimay offers a systematic
process for developing CNLs, referred to as RTs, enabling practitioners to create
their own RTs using the tool. In particular, the paper "Automated Recommen-
dation of Templates for Legal Requirements" [53] introduces a novel approach for
automatic template recommendation for legal requirements. The approach hinges
upon a qualitative study that establishes NLP rules to facilitate the recommenda-
tion process. Numerous works in the past literature have addressed the topic of
software requirements conformance checking to RTs, as referenced in [22][25][12].
Among these, the DODT tool [22] and the RQA tool [9] rely on domain ontology
to facilitate conformance checking with templates. However, Requirements Tem-
plate Analyzer (RETA) [4] has been specifically developed to assess requirements
conformance with two templates, namely EARS [33] and RUPPs [43]. An advan-
tage of RETA is, it is independent of domain ontology and domain-specific terms
during requirements analysis [12].

After a comprehensive review, we have come to the overall conclusion that
none of the aforementioned discussions explicitly address the complete scope
of the issue we tackle in this work: The automated conformance checking of
requirements with RTs and The automated generation of recommendations for
TNC requirements. Our approach stands out from RETA in several significant
aspects. Firstly, our tool goes beyond RETA by providing recommendations for
Non-Conforming requirements, which RETA lacks. Secondly, while RETA em-

ploys a text chunking process for automated conformance checking, our tool lever-

15

ages parsing techniques. The generation of recommendations in our tool relies
exclusively on the effective results derived from the parsing-based conformance
checking process. This distinction ensures the reliability of our recommendation
generation process.

3.4 Non-Functional Requirements

Despite their inherent importance in software development, NFRs have histor-
ically received less attention compared to FRs. In many cases, they have been
neglected or overlooked entirely [16]. Insufficient consideration or inadequate
treatment of NFRs often results in software products that are not deemed ac-
ceptable. Therefore, it is equally crucial to analyze NFRs. NFRs that cannot be
tested are often disregarded in the development of a system since there are no
means to validate them. Consequently, it is essential to assess the testability of
NFRs [19][26]. Various research studies have demonstrated the significance of
evaluating the testability of NFRs [35][52][45]. In related research [52], the use
of Scenario-Based representation for NFR testability analysis has been proposed.
The authors introduced a template that employs vertical and horizontal dissec-
tion to analyze quality concerns, with the identified delimiters serving as a basis
for assessing system testability. Metsa et al. [35] evaluate the usage of aspect ori-
entation for testing NFRs in software systems. The mentioned approach identifies
the system features that can be effectively tested using aspects and explores meth-
ods for deriving test objectives from NFRs. In the research for quality assurance
of NFR [45], authors have used the fit criteria and applied Rule-based learning to
check the testability. However, In this thesis, we have developed a tool-supported
approach which performs testability checking of NFRs by evaluating the presence
of acceptance criteria and by leveraging technologies like the ‘General Architec-
ture for Text Engineering (GATE) NLP Workbench’ [17][27] and "JAPE Rules’.

16

CHAPTER 4
Automated Conformance Checking of Func-
tional Requirements to RTs

4.1 NLP Pipeline to process FR

Our methodology entails the utilization of an NLP Pipeline, illustrated in Figure
4.1, which encompasses seven modules that systematically process the FR docu-
ment. The result of this sequential processing is an annotated requirement doc-
ument. The following description provides a concise overview of the usage and
functionality of each module.

1. Tokenizer: It is a crucial NLP module that effectively breaks down FRs into
smaller units known as tokens, each representing a single word in the re-
quirement.

2. Sentence Splitter: The goal of sentence splitting is to break down a larger
piece of text into smaller, more manageable units called sentences. It is used
in our approach for identifying the boundaries between requirement sen-

tences.

3. POS Tagger: This module assigns a grammatical tag to each token in a
requirement based on its syntactic function and context. The POS tagger
provides us with valuable insights into the linguistic aspects of the require-
ments by identifying the POS tags such as nouns, verbs, adjectives, adverbs,
and others within the requirements.

4. Named Entity (NE) transducer: With the objective of conducting compre-
hensive requirement analysis, our approach incorporates an NE transducer
module. This module identifies and categorizes named entities within the
FRs, including specific People, locations, organizations, products, and other
entities that possess unique names or designations.

17

5. Gazetteer: It is a module that stores lists of words or phrases related to a
particular concept or entity. By utilizing this module, our approach can ef-
fectively identify and classify text based on the presence of these predefined
words or phrases. We have developed a dedicated gazetteer list tailored to
identify Vague, Implicit, Conditional, and Quantifier words, as well as Ad-
verbs within verb phrases, in the FRs.

6. Morphological Analyser: This module provides an in-depth analysis of
the structure and grammatical properties of tokens within the FRs, such as
voice, tense, root form etc. By incorporating this module into our approach,
we want to accurately determine the root form of words. The root form rep-
resents the fundamental and uninflected version of a word, commonly used
as the dictionary form or lemma.

7. Parser: The parser module plays a vital role in our approach by facilitat-
ing the construction of parse trees. These parse trees depict the hierarchical
structure of the requirements and the relationships between their compo-
nents. By utilizing the parser, we can identify complex noun phrases and
verb phrases within the requirements.

E ‘. Tokenizer K @

NL Requirements

i

Sentence Splitter

i

POS Tagger

il

7

Named Entity |
recognizer

Gazetter

. Morphological N
Analyser \ @
B mle

NL Requirements with
annotations

Figure 4.1: NLP Pipeline for FR

18

Deviating from the approach outlined in RETA [12], which employs Text Chunk-
ing for conformance checking, we embrace the Parsing technique. Unlike the Text
Chunking process, Parsing possesses the capability to accurately identify Com-
plex Nouns. Therefore, the adoption of Parsing is paramount in our work, as
it enables us to achieve precise conformance checking results and facilitates the

generation of accurate recommendations for TNC requirements.

4.2 JAPE Rules for Conformance Checking

After the successful execution of the entire NLP Pipeline on the FR document,
an annotated document is generated. This annotated document contains vari-
ous linguistic features, including annotations for Noun Phrases, Verb Phrases,
Conditional words, and more. The JAPE file utilizes the acquired information
to classify FRs into two distinct categories: Conformance requirements and Non-
Conformance requirements.

The JAPE file comprises a collection of rules that serve to identify different
slots of EARS and RUPPs templates within the FRs. Once all the slots have been
appropriately identified and annotated, an additional rule is applied to evalu-
ate the correct occurrence of these annotations within the requirement, as per the
template structure. This rule facilitates the categorization of requirements into ei-
ther Conformance or Non-Conformance. The following elucidation outlines the
successive rules of the JAPE file.

1. Annotate Condition annotates the condition that appears at the beginning
of a requirement and precedes the system name. Condition phrase is charac-
terized by a conditional keyword, which is followed by a sequence of tokens.
The tokens may consist of one or more words that describe the conditions
under which the functionality of the system needs to be provided.

2. Annotate System Name refers to the rule for identifying and labelling the
Noun Phrase that represents the system being referred to in a given require-
ment. The System Name is a Noun Phrase that appears before the Verb
Phrase in the requirement and serves as the subject of the action being de-
scribed.

3. Annotate Valid Modal Verb Phrase is a rule used for recognizing and mark-
ing the Verb Phrase that contains a valid modal auxiliary verb as per the
templates, such as "will", "shall", or "should".

19

4. Annotate Object rule is used to annotate the Noun Phrase that appears after
the Verb Phrase in a requirement. The Object typically represents the entity
or thing that is affected by the action described in the Verb Phrase.

5. Annotate Object Details This rule is responsible for identifying and anno-
tating the sequence of tokens that appears after the Object in a requirement.
It is important to note that this part is optional and may not be present in
every requirement. This rule excludes the requirements that contain condi-
tional keywords after the Object Name.

6. Annotate TC requirements is the rule for recognizing and annotating all
FRs that conform to either RUPPs or EARS template structure. The objective
of this rule is to ensure that the FRs conform to the specific template struc-
ture and include all the necessary components. This rule is performed after
the previous annotations have been completed, as it relies on the informa-
tion gathered from those annotations.

7. Annotate TNC requirements is a rule that involves identifying and annotat-
ing all requirements that do not conform to any of the template structures,
RUPPs or EARS; and have not been previously annotated as TC require-
ments.

In Figure 4.2, example requirements are presented along with the annotations
generated after executing the NLP Pipeline and applying the JAPE File. Require-
ments R1 and R2 are annotated as TC, while requirement R3 is annotated as TNC.

In requirement R1, the phrase "If the statistical report is selected" is annotated
as a Condition since it begins with the conditional keyword ‘If” and is followed by
a series of tokens. The phrase "the THEMS system" is annotated as System Name
because it represents a Noun Phrase occurring before the Verb Phrase. Next,
"SHALL present" is annotated as a Valid Modal Verb Phrase because it consti-
tutes a Verb Phrase commencing with the valid modal 'SHALL'. Lastly, "a list of
available months" is a Noun Phrase which is following the Verb Phrase, and it is
therefore annotated as an Object.

The annotation sequence for requirement R1 is as follows: Condition -> Sys-
tem Name -> Valid Modal Verb Phrase -> Object. It conforms to the Autonomous
requirement type specified in RUPPs, leading to its annotation as a TC require-
ment.

Requirement R3 is annotated as a TNC requirement because it deviates from
the expected structure outlined in both the RUPPs and EARS templates. Accord-

20

Condition System Name
A

r a1 Al
R1: { If the statistical report is selected, the THEMAS system
SHALL present a list of available montns.}
L JL J

Y X
Valid Modal Object
VP
Valid Modal
System Name VP Object
3 Je .

r a0 ar)) A
R2: {The THEMAS system SHALL control the heating and cooling units
t{\at are defined as part of the THEMAS system)_}

-
Object details

Valid Modal _
System Name VP Object
I

] R
R3: {qhe MultiMahjongClient WILL save the user preferences
in a file and read them in when the program begms.}

Template Conformance: { } Template NonConformance:{ }

Figure 4.2: Example requirements with the annotations generated after running
the JAPE file

ing to these templates, the condition is expected to appear at the beginning of the
requirement. However, in this particular requirement, the condition appears after
the Object Name, which violates the specified template structure.

The example JAPE Rule in Figure 4.3 demonstrates the identification and an-
notation of the Ubiquitous requirement type of EARS. The rule consists of two
sides: the Left-Hand Side (LHS) and the Right-Hand Side (RHS), separated by the
symbol '—>’. The LHS is employed to match a specific pattern in the text, while
the RHS processes and annotates that text.

In this particular rule, the LHS is used to identify the pattern for the EARS
Ubiquitous requirement type. It begins with the {SystemName,!/Warn_Pronoun,
Warn_implicity} annotation, followed by {ModalEARS}, and concludes with the
occurrence of a certain number of tokens denoted by { Token,!Conditional }+. To de-
termine the end of the requirement sentence, the {Split} is matched after this pat-
tern. This JAPE Rule takes input from previous JAPE Rules, which produce anno-
tations such as SystemName, ModalEARS, Conditional, Warn_Pronoun, and Warn_-
implicity. The {SystemName} annotation is used to annotate the subject of the
requirement, while {ModalEARS} annotates the SHALL keyword that follows

21

the subject. To prevent the matching of texts with ambiguous terms as their
SystemName, {!Warn_Pronoun, !Warn_implicity} are utilized. These restrictions
ensure the rule does not match texts containing such ambiguous terms. The
{Token,!Conditional } + suggests that the System Response should not contain any
‘Conditional” tokens. Here, ‘Conditional’ is a dictionary created in the Gazetteer,
which includes conditional keywords such as “if’, ‘while’, ‘when’, and so on. Once
this entire requirement text is identified, it is annotated using the RHS of the
RULE.

Phase: EARS
Input: Token Split Warn_Pronoun ModalEARS SystemName Conditional Warn_implicity
Options: control = first

Rule Ubiquitous

(
(({SystemName, !Warn_Pronoun, !Warn_implicity}) : System
({ModalEARS}) : Modal
(({Token, !Conditional})+
({Split})) : SystemRes) : TemplateConformance
):ann
-->
{
AnnotationSet con = bindings.get("TemplateConformance™);
Annotation conformanceAnn = conformance.iterator().next();
FeatureMap features = Factory.newFeatureMap();
features.put("explanation”, "Following Ubiquitous requirement type of EARS");
outputAS,add(con.firstNode(), con.lastNode(),"TemplateConformance"”,features);
}

Figure 4.3: JAPE Rule for EARS Ubiquitous requirement

22

CHAPTER 5
Automated Recommendation System for Non-
Conformance Requirements

5.1 JAPE Rules for Providing Recommendations

After annotating the requirements as TNC, it is crucial to determine the reason
behind their Non-Conformance to the template structure and provide modified
requirements that maintain the same meaning as the original requirement and
Conform to either of the templates, EARS or RUPPs. This task is accomplished
through the JAPE Rules. To achieve this, the LHS of each JAPE Rule contains
specific pattern that indicates the reason for Non-Conformance, while the RHS of
the each JAPE Rule provides recommendation based on the identified error.

When it comes to identifying TNC in requirements, there are five potential
cases to consider. To address each of these cases, we have developed distinct
JAPE rules that facilitate the precise identification and categorization of instances
of Non-Conformance.

1. Missing System Name: If the System Name specified in the FR is an im-
plicit or pronoun term, there is a potential for referential ambiguity within
the requirement, and it deviates from the expected EARS and RUPPs tem-
plate structure. This JAPE rule identifies such requirements and provides
appropriate recommendations by replacing the pronoun/implicit term with
the phrase {The System}. Alternatively, if explicit glossary terms for these
requirements are provided, referential ambiguity can be resolved by substi-
tuting the ambiguous terms with the specified System Name mentioned in

the Requirement glossary.

2. Missing/Incorrect Modal: This rule addresses cases in which a modal verb
other than those specified in the EARS and RUPPs templates (i.e., "will,"
"shall," or "should") is used. In such instances, the rule suggests a revised

23

version of the requirement in which the incorrect modal is replaced with
the appropriate modal phrase Will/Shall/Should. However, due to the rule-
based nature of the system, offering a specific modal as a suggestion poses
a challenge.

3. Passive Voice: When a requirement is expressed in the passive voice, it sug-
gests that the System name of the requirement is either implicit or described
after the functionality. However, both the EARS and RUPPs templates spec-
ify that the subject or System name should precede the functionality or Verb
Phrase. This JAPE Rule identifies such cases, facilitates the automatic con-
version from the passive voice to active voice, and generates a TC version of
the requirement.

4. Conditional details: When the condition is positioned after the object in the
requirement sentence, such requirements fall into this category. To ensure
the correct TC recommendation, the entire conditional fragment is relocated
to the beginning of the requirement, specifically before the System Name.

5. Redundant Data: This category comprises requirements that contain data
other than a conditional fragment or system name at the beginning of the
requirement. To address this issue, a JAPE rule is employed to provide a
recommendation that involves removing all tokens preceding the system
name/condition and relocating them after the object details fragment. This
adjustment ensures that these tokens are placed at the end of the require-
ment, resulting in improved clarity and conciseness.

The example JAPE Rule depicted in Figure 5.1 showcases the process of iden-
tifying and annotating the Conditional details type of Non-Conformance. The
LHS of this rule commences with ({Condition})?, indicating that there may or
may not be a condition present at the beginning of the requirement. Following
that, {SystemName, !Warn_Pronoun, Warn_implicity} examines whether the subse-
quent component of the requirement corresponds to a System Name. Next, it ver-
ifies if any of the valid Modals from RUPPs and EARS are used in the next compo-
nent of the requirement using the Syntax ({ ModalForRupplInterface} | {ModalEARS}
| {ModalForRuppAutonomous} | {ModalForRuppUI}). The last part of the rule is
responsible for determining if the "Conditional” keyword appears anywhere in the
System response or details section of the requirement. If this pattern is matched,
the rule proceeds to annotate the identified portion and provides a recommenda-

tion for that particular requirement through the RHS of the rule.

24

Table 5.1: Non-Conformance requirements with recommendations generated by

the approach

Requirement Reason Recommendation

for Non-

Conformance
The MultiMahjongClient will | Conditional It h 1 ‘< fishi
inform the user if another | details anot €r player 1S Hishing,
1 is fishin The MultiMahjongClient will
prayer Is IS inform the user
For each event that is gen Redundant | The THEMAS system shall

Vv - . .

data identify each event and gen-
erated, t1.1e T_HEMAS SYys- erate the appropriate event
tem shall identify each event data, For each event that is
and generate the appropriate generated
event data. '
The MultiMahjongClient | Incorrect The MultiMahjongClient
must only allow players to | Modal will/shall/should only allow

make moves according to the
Chinese rules of Mahjong.

players to make moves ac-
cording to the Chinese rules
of Mahjong.

The processing for any Com-
puter Opponents will be done
by the MultiMahjongClient
program.

The sentence
is in passive
voice

The MultiMahjongClient pro-
gram will do The processing
for any Computer Opponents.

When the THEMAS system is
initialized, it shall first turn
off all the heating and cooling
units.

Referencial
ambiguity,
System name
is missing

When the THEMAS system is
initialized, {The system] shall
first turn off all the heating
and cooling units.

25

Phase: Nonconformance

Input: Token Split Warn_Pronoun ModalEARS SystemName Conditional Warn_implicity
Condition ModalForRuppInterface ModalForRuppAutonomous ModalForRuppUI

Options: control = first

Rule: ConditionalDetails

(({Condition})? : Con

({SystemName, !Warn_Pronoun, !Warn_implicity}) : SN

({ModalForRuppInterface} | {ModalEARS} |

{ModalForRuppAutonomous} | {ModalForRuppUI}) : Modal

(({Token, !Split})* {Conditional} ({Token})+ {Split}) : Details) : ConditionalDetails
):ann
-->
{

String recommendation = "";

\\code to generate the recommendation

AnnotationSet AnnSet = bindings.get("ConditionalDetails™);

Annotation Ann = AnnSet.iterator().next();

FeatureMap newFeatures = Factory.newFeatureMap();

newFeatures.put(“Reason”, "Conditional details");

newFeatures.put(“Recommendation”, recommendation);

outputAS.add(AnnSet.firstNode(), AnnSet.lastNode(), "TemplateNonConformance”,newFeatures);

Figure 5.1: JAPE Rule to identify Conditional details
Table 5.1 presents several examples of TNC requirements, accompanied by the

corresponding reasons for Non-Conformance and the recommended corrections
for achieving conformance.

26

CHAPTER 6
Automated Analysis of Non-Functional Require-

ments

6.1 Testability of Non-Functional Requirements

NFRs have historically been overlooked in software development. Despite being
among the most expensive and difficult requirements, NFRs are often neglected or
forgotten, as functionality takes priority over quality concerns. It is universally ac-
knowledged that NFRs are crucial for software acceptability, yet the industry has
treated them casually for a long time. Failure to satisfy these requirements results
in low acceptability, which goes against the product due to increasing competi-
tion and critical system failures. The importance of addressing NFRs has become
evident, and the industry must focus on these requirements to deliver successful
software products.

According to the IEEE format, a Software Requirements Specification (SRS)
should adhere to several criteria, including being correct, unambiguous, com-
plete, consistent, ranked for importance and/or testability, verifiable, modifiable,
and traceable, as outlined in [13][44][19]. NFRs are particularly crucial in this re-
gard since they typically arise from the quality concerns of stakeholders, which
can be inherently ambiguous and vague. Therefore, NFRs must be specified ob-
jectively and be Testable to ensure they are addressed effectively. Measurable and
Testable requirements are essential for testing NFRs, as highlighted by the perfor-
mance testing model [19][26], where such requirements form the first step towards
testing. NFRs that cannot be tested are usually disregarded during software de-
velopment since there is no way to validate them. Consequently, NFRs need to
be evaluated for their testability. However, with NL requirements, determining
testability has traditionally been done manually, leading to significant time and
cost implications.

A requirement is considered Testable when it has been analyzed and broken

27

down to a level where it is specific, clear, unambiguous, and not capable of being
divided into lower-level requirements. When NFRs are not Testable or quantifi-
able, they are likely to be ambiguous, incomplete, or incorrect.

Below are a few examples of NFRs categorized as Non-Testable and Testable:

1. Non-Testable: "The system shall be fast." The specified requirement is not
quantifiable, and the interpretation of "fast" can differ from one individual to
another. A revised Testable requirement could be: The system shall respond

to user requests within two seconds.

2. Non-Testable: "The system shall be scalable." This requirement lacks preci-
sion and is not quantifiable, rendering it Non-Testable. One possible way
to rephrase the requirement to make it Testable could be: The system shall
be able to handle a 20% increase in user load without a decrease in perfor-
mance.

3. Non-Testable: "The system shall be reliable.” The term "reliable", as used in
the requirement, lacks clarity. A revised Testable version of the requirement
may read as follows: The system shall have a mean time of at least 10,000
hours between failures.

The objective of this work is to enhance the clarity and testability of NFRs,
particularly those that are Non-Testable, by identifying them and presenting them
to stakeholders for further refinement.

6.2 Acceptance criteria

To identify Non-Testable NFRs, our automated approach utilizes acceptance crite-
ria as a key metric. By incorporating acceptance criteria into our analysis, we can
differentiate between Testable and Non-Testable requirements. Requirements that
include acceptance criteria are recognized as Testable, whereas those lacking ac-
ceptance criteria are categorized as Non-Testable. This approach enables efficient
identification and classification of NFRs based on their potential for testing.

The concept of acceptance criteria consists of two distinct subclasses: Unit and
Quantity. The Quantity subclass relates to the numerical value preceding a spe-
cific unit of measurement. Meanwhile, the Unit subclass encompasses six sub-
classes that represent different unit categories such as Time, Percentage, Limit,
Speed, Frequency, and Distance, which are detailed in Table 6.1.

28

Table 6.1: Acceptance-Criteria concepts description

Concept Description Example
Time The time units 12 seconds, two days, 8 PM
Percentage | The percentage of the measured object 80% of the users

L. The measured entities that do not .
Limit 5 movies

belong to other fit-criteria

Speed The data transfer connection speed 15 mbps
The occurrence number of events per ,
Frequency L. 2 times per day
time interval
Distance The distance between two objects 1.4 miles

In order to identify the presence of acceptance criteria, we utilized a similar
technology that employs an NLP Pipeline and JAPE rules, similar to our approach
for checking the conformance of FRs to RTs. However, it is important to note that
the NLP Pipeline and JAPE rules implemented for evaluating testability differ
from those used for conformance checking.

6.3 NLP Pipeline to process NFRs

The NLP Pipeline processing of NFRs aids in the categorization of requirements
into two distinct groups based on the presence of acceptance criteria: 1) Testable
and 2) Non-Testable.

1. Tokenizer: A tokenizer is a module that breaks down NFRs into separate
words or tokens.

2. Sentence Splitter: This module plays a crucial role in dividing extensive
collections of NFRs into distinct sentences, enabling further analysis of the

NERs on a sentence-by-sentence basis.

3. POS Tagger: This module assigns a precise label, such as a noun, verb, ad-

jective, and more, to each token within an NFR sentence.

4. Gazetter: This module manages dictionaries containing words that asso-
ciate to specific concepts or entities. We have curated different lists to iden-
tify Vague, Implicit, Conditional, and Quantifier words within NFRs. Fur-
thermore, we have constructed a dictionary to handle keywords associated

with limits, including terms like "within," "minimum," "maximum," "more

29

than," and others. This dictionary contributes to the identification of accep-

]

tance criteria.

NFRs
Tokenizer » Numbers Tagger
—_—
) Y .) v X
Sentence Splitter Measurement
Tagger
99
\ 4) v
POS Tagger NFR JAPE File
—_—
h 4 i
Gazetter \ 4
Testable «+”
Non-Testable X
NFRs with

annotations

Figure 6.1: NLP Pipeline for NFRs

5. Numbers Tagger: This module identifies and extracts numerical data, which
includes integers, decimals, fractions, percentages, and currencies. It profi-
ciently detects these numeric values, thereby contributing to the identifica-
tion of the Quantity subclass of acceptance criteria.

6. Measurement Tagger: This specialized module recognizes and extracts mea-
surements, such as lengths, weights, temperatures, time, and more, from
textual data. By precisely identifying these measurements, the module plays

a crucial role in identifying the Unit subclass of acceptance criteria.

7. JAPE File: Once the Unit and Quantity subclasses annotations are obtained
from the preceding NLP modules, the JAPE file employs these annotations
within the RULES to classify requirements as either Testable or Non-Testable.

As depicted in Figure 6.2, after the completion of pipeline processing, R1 and
R2 are classified as Testable, while R3 is categorized as Non-Testable. R1 features
acceptance criteria specifying "1 minute," wherein the term "minute" belongs to
the Time subclass. Conversely, R2 falls within the Limit subclass and presents
acceptance criteria indicating "10 simultaneous games."

30

Time

—
R1: {The CO must respond within [1 minute] in both single and multi player modes.}

R2: {The MultiMahjongServer must be able to handle requests in multi player mode
" Tof upto[10 sjmultaneous games.] }

T
Limit

R3: {Users will be able to chat with each other in real time. }

Testable:{ } Non-TestabIe:{ } Acceptance criteria:[]

Figure 6.2: Example NFRs with the annotations generated after the processing of
NLP Pipeline

6.4 JAPE Rules for detecting the Acceptance criteria
in NFRs

Each class in the Acceptance criteria is accompanied by a JAPE Rule specifically
designed to identify and annotate the corresponding pattern within the NFRs.

Phase: AcceptanceCriteria
Input: Limit_ Keywords Measurement Token Number
Options: control = applet

Rule: Limit

(
({Limit_Keywords})?
(({Measurement}) |
({Token.kind == number} {Token.category == 13} {Token.category == NNS}) |
({Token.kind == number} {Token.category == NNS}) |
({Number} {Token.category == NNS}))
)
:ann

-->
:ann. Quantification =
{ type = "Quantification” , string = :ann@string , majorType="units"}

Figure 6.3: JAPE Rule for the 'Limit” Acceptance Criteria Class

For instance, the example JAPE Rule for the ‘Limit’ class is illustrated in Figure
6.3. This rule utilizes the annotations generated by previous modules of the NLP
Pipeline to match the desired pattern. In this particular rule, the {Limit_Keywords}
refers to a dictionary containing various limit-related words such as ‘within’, ‘min-

31

imum’, ‘maximum’, and so on. The Measurement Tagger module generates the
{Measurement} annotation, while the Numbers Tagger generates {Number} an-
notation. These annotations are employed by the rule to effectively match the
pattern and annotate the relevant information.

32

CHAPTER 7

Tool Support

7.1 Introduction

We have developed a comprehensive tool that effectively implements our ap-
proach. This tool has been specifically designed to analyze both the FRs and
NFRs, effectively reducing any ambiguities that are present. It offers a range of
valuable features, including:

Functional Requirements Conformance Checking: The provided tool is a valu-
able resource for verifying the conformity of FRs with two RTs: EARS and RUPPs.
Recommendation generation for TNC Requirements: It assists in identifying
Non-Conformance reasons and recommends semantically identical requirements
that conform to the specified templates. By doing so, the tool ensures that all FRs
align with the predefined standards.

Testability Checking of Non-Functional Requirements : In addition to FR con-
formance checking, the tool also performs comprehensive testability verification
for NFRs based on well-defined acceptance criteria.

7.2 Architecture and Demonstration of the tool

Our tool has been developed utilizing two distinct technologies. Firstly, we have
integrated the GATE Framework [17], which incorporates all the NLP modules
and JAPE files. This framework is an open-source framework developed in 1995
at Sheffield University. Its purpose is to help developers, students, educators,
users, and scientists in resolving text-processing challenges. GATE is built on Java
and offers a user-friendly interface known as GATE Developer [27], along with a
comprehensive set of libraries accessible through its Application Programming
Interface (API).

33

In addition to GATE, our tool employs JavaServer Pages (JSP), a Java-based
framework, to encapsulate the functionalities of the GATE Framework. This in-
tegration enables us to leverage the capabilities of GATE within a web applica-
tion context, thereby enhancing the overall architecture of our tool. Through this
wrapping process, we ensure a seamless integration that allows the functionalities
of the GATE Framework to interact smoothly with the users, thereby enhancing
their experience with our tool. To encapsulate or embed GATE processing, we uti-
lize 'GATE Embedded’ in our Java code, which is the API provided by the GATE
Framework.

GATE Main characteristics: The GATE Framework operates on a component-
based architecture, which emphasizes the separation of data and application func-
tionalities.

1. Language Resources include a diverse range of items for processing, such
as documents, corpora, annotation schemas, and ontologies.

2. Processing Resources consist of tools and plugins that execute specific text
analysis functions, such as parsers and tokenizers.

3. Applications involve pipelines of Processing Resources designed to process
data from Language Resources systematically.

4. Data Store acts as a repository for processed Language Resources, ensuring
their accessibility and preservation.

NLP Pipeline configuration used for FR: In Figure 7.1, we can observe the
various components of GATE. Specifically, under the Applications tab, we have
saved a pipeline called 'Pipelinefr’, which represents the NLP Pipeline utilized
for processing the FRs. Moving on to the Language Resources tab, we can see a
corpus and a document labelled as 'FR’, signifying the FR document that requires
processing. Lastly, within the Processing Resources tab, there are eight NLP re-
sources displayed. These NLP modules are employed in our NLP Pipeline to pro-
cess the data provided in the FR document file. The Processing Resources flow
through the FR document one by one and generate results that involve the clas-
sification of FRs according to their conformance to RTs. Furthermore, the system
offers recommendations for non-conforming requirements.

Excluding the ANNIE Gazetteer [11] and GATE Morphological analyzer [2],
we have thoroughly explored all available alternatives within the GATE frame-
work for the remaining five modules. Our focus has been exclusively on exploring
alternatives within the GATE framework without considering any options outside

34

of it. In the following list, we present the diverse alternatives that were considered

G GATE Developer 9.0.1 build 5271e02
File Options Tools Help

&% %58 w7
GATE
=] Applications

g(\? NLP Pipeline

=| @ Language Resources
46 Corpus for FR

@, Example FR Document

= # Processing Resources

e FR

%\, OpenNLP Parser 00016

\. GATE Morphological analyser 00029
‘ ANNIE Gazetteer 00020

e ANNIE NE Transducer 00011

‘ Stanford POS Tagger 00018

S\, OpenNLP Sentence Spiitter 00026

%\, OpenNLP Tokenizer 00025

ﬁ Datastores

Figure 7.1: GATE components

for each of the five modules:

1. Tokenizer: ANNIE English Tokeniser [11], OpenNLP Tokenizer [10], Stan-
ford PTB Tokenizer [7]

5.

As a result, we have a total of 108 different NLP Pipeline configurations (3 x 2
x 3 x 3 x 2) to compare. After carefully observing the results, we have considered
the following alternatives for the given modules: OpenNLP Tokenizer, OpenNLP
Sentence Splitter, ANNIE NE Transducer, Stanford POS Tagger, and OpenNLP
Parser.

Sentence Splitter: ANNIE Sentence Splitter [11], OpenNLP Sentence Split-

Named Entity Recognizer: ANNIE NE Transducer [11], OpenNLP NER
[10], Stanford NER [5]

POS Tagger: ANNIE POS Tagger [11], Stanford POS Tagger [8], OpenNLP
POS Tagger [10]

Parser: OpenNLP Parser [10], StanfordParser [6]

35

NLP Resources

NLP Pipeline configuration used for NFRs: In the NFRs NLP Pipeline, we
have opted for the same alternatives as in the FR NLP Pipeline. Specifically,
we have utilized the OpenNLP Tokenizer, OpenNLP Sentence Splitter, ANNIE
Gazetteer, and Stanford POS Tagger. Additionally, we have included two new
NLP modules, namely the Numbers Tagger [3] and the Measurement Tagger. A
clear visual representation of all the modules included in the NFRs Pipeline can
be found in Figure 7.3, which is located within the Processing Resources tab.

We offer two ways for FR conformance checking and NFR testability checking:

1. Directly accessing the GATE Framework: Users can open the GATE Frame-
work and execute the NLP Pipeline on the document of interest. This method
allows for direct interaction with the GATE NLP Workbench.

Figure 7.2 shows the results of the conformance checking approach after
running the NLP Pipeline on the document by directly opening the GATE
Framework. Here the “TemplateConformance’ checkbox highlights all sen-
tences in green that conform to either the template structure of EARS or
RUPPs, and the "TemplateNonConformance” checkbox highlights all sen-
tences in red that fail to conform to the template structures, EARS, and
RUPPs. By hovering the mouse over a specific “TemplateNonConformance’
requirement, users gain access to the recommendation and reason for the
Non-Conformance, presented in the box below it.

G
File Opticns Tools Help
oAl AR N I
G_i'..| Messages & FR ;fﬁppsmrr
3 sootcavees Aorolation Sets| Arvolations st Amolations Stack Co-eference Edtor Text () v
3‘; [Sedundant
The MuUtMatonSes e wil akow comections from MuMshjongQients and comuricale with iem wsrg P, -
= 08 Language Resources The MultMahongserver wil be bl 1o save oreferences to 3 e and read fiom at fle ot startm, [Sentene
_ Th w 50 that the (L Smallestyp
& Corpun for The pracesang for any Computer Gppanents (00) wi be =
p4 (n a snge player game, for 3C0s . [SpaceToken
L& When a user selects the 03%0n £ jon en existing geme, the MultiMshjongOient wil relrive a ist of any Garmes et bl requie layers from the MuliManjongServer. | | — 4y,
f a user ermtier uoers madine o fil e place. L fosk
= ek processing Resources This CO vil take over the Joers e in th [SyntaxTraeNods
S The OC must play moves accorchg 1o the Chinese rules of O Sieaane
H = e
£\, Ooerta Parser 00026 «» 7 <) < @ Temobatelanemancs
N, GATEMorphoogics anslyser 00029 TemplatetanConformance v @ Temslateto-Cenformerce
H ‘ ANNIE Gazetteer 00020 Reason Condtonal detais | x C e
H [|
£ % ane N Trensccer 00011 Recommencatio - if ancther player is fistirg, The MultiMshicrgClent willinform the user | x (O vague
= 5 .
£ P stenford 205 Teaer 0023 sting e MallehjorcClent wilinform e f anatve payesisfeting. | % [NamND)
i\, Ooentws sentence spltrer 00025 O WimpRIvENGE
N | x ([Warm_Plural_Noun
Operfd ® 1okener 00024 —
. (" Wam_Prenaun
e » Open Search & Amnotate tool =
-Mla»lua (™ Wam Vagie e
[Wam imglicty
[ambiguousSN
(_ entity
MmeTye textjplan o -
docientrelyp CRLF [entityd
b Original markups
etz OrignalUR | fies/C: fUsers/Sh
New
retig Solh hare Doaument ditor Inhaksation Parametecs dsiahon Viewsr

Ppeine® an n 0485 secords

Figure 7.2: GATE Framework utilized for FR conformance checking

Users have the option to access the GATE Framework to execute the NLP

36

G

Pipeline on the desired NFR document. Figure 7.3 visually demonstrates
the outcomes of the testability checking approach by running the NFRs NLP
Pipeline on the NFR document, using the GATE Framework. In this sce-
nario, the "Testable’ checkbox emphasizes all sentences containing Quantifi-
cation/ acceptance criteria by highlighting them in green. Conversely, the
"Non-Testable” checkbox highlights sentences that lack any Quantification,
presenting them in red.

LY

R an

L

; %:AN

s

- Gh stenford 205 Teger 00032

[7
"

G_':,_| E Messages &7 MR _Ev Ppeine nfr
Qﬁ» apnbcahars ‘
Armolaton Sets Armolatiors Lst Armwolatiors Sleck Co-reference Edior Text K_‘
b 1 masiman size Urougioul e isen ife & sxpected o reach 0GB, od
= 0g Lanuaoe Resources [The syztem chould auogert a minmam afmfmﬂ nedrtal and mobiie aop.) Unckip3
very fast generation of bin (3l geoohysical parametars n O & 5
& Copun forner 4000 shod e e e thon 08K N G
1 s Th g ch) Lockups
L4 NR The reasan for the corresaonding faikre shoukd be debugged veih least e b repeir. Of 5
 The endrod e shoud be oortable b 105 pletiorm with minivdl efforts. L/ Heatremar
= {{- Proceseng Resources | The coftware sheulc be able to generate data orocucts with targeted acaracy aithin project timelines (of [ISEINNINS i ducing NGNS of data acauisition) in 3 relablz manner, (7] Modality
' single server running with effidency of SOISE. () Nonanker
i R The system shauld be secure, and any tempering of data should rot be poasiie, | ey
saftware snal be roaust and faul tolerant. @ NoriTestaske
i« B Meesurement Tagger L003C
%2 Numbers Tegoer 0003
" ANNIE Gazettoer 00024

INIE NE Transducer 00034

INEE Sentence Spltter 0003

NI Engish Toxensar (002

MimeTyoe

Ppeine nfr run

dodfientneTyp | CRIF
gat=.Crignaluk fie:/C: Asers/d

Qate. ScurceURL fie:/C: Users/S

v | textplan

Document Edtor Insalsaton Paramesers Relaton Viewer

n 0434 saconds

2.

Figure 7.3: GATE Framework utilized for NFRs testability checking

Utilizing our wrapper tool: Our Wrapper tool combines various web tech-
nologies, including HTML and JSP, to facilitate the execution of the GATE
NLP Workbench in the background. Users can leverage this tool to perform
FR conformance checking and NFR testability checking.

Figure 7.4 illustrates the outcomes of the conformance classification after
executing our wrapper tool on the document. The tool presents distinct
tables to display TC and TNC FRs. For each TNC requirement, the tool
showcases the reason for Non-Conformance and the recommended TC re-
quirement. Users can conveniently download both tables in Excel format by
using the labelled buttons "Download Conformance Excel" and "Download
Non-Conformance Excel". Additionally, the annotated FR document can be
easily downloaded through the "Download PDF" button. With its seam-
less user interface, the tool greatly facilitates thorough requirement analysis.
Importantly, when the document is submitted for analysis, the JSP file em-

37

ploys GATE Embedded code, effectively utilizing the GATE Framework in
the background to generate conformance classification results.

The results of the testability classification, obtained by running our wrapper
tool on the NFR document, are depicted in Figure 7.5. This tool efficiently
presents the outcomes in a comprehensive table, clearly distinguishing be-
tween Testable and Non-Testable NFRs. In addition to the classification, the
tool also showcases the acceptance criteria for each Testable requirement, en-
abling users to gain valuable insights. In the background, the tool leverages
the powerful GATE Framework to generate these results, ensuring an effec-
tive and robust analysis. To enhance convenience, the tool offers labelled
buttons for downloading the table in Excel and PDF formats.

Architecture: The architecture of the tool, as illustrated in Figure 7.6, contains
five sequential steps.

1. The requirement analyst utilizes the user interface (UI) of the Wrapper tool
to upload the FR/NFR PDF document. Additionally, they make a selection
between checking the "Testability of NFRs" or "Conformance of FRs". The
information provided through the UI is then passed to the JSP file, which
acts as the backend of the tool and facilitates its functionality.

2. The code within the JSP file converts the FR/NFR document from PDF to a
text file and opens the GATE Framework. This is achieved by utilizing the
relevant libraries from GATE EMBEDDED.

3. The JSP code proceeds to open either an FR XGAPP/NFR.XGAPP file within
the GATE Framework. These XGAPP files contain the NLP pipeline specific
to the FR/NFR. Upon opening the file, the NLP pipeline is loaded under
the "Applications’ tab, which in turn loads all the NLP modules under the
"Processing Resources’ tab, including the JAPE file. Simultaneously, the con-
verted text file from the previous step is loaded under the ‘Language Re-
sources’ tab. Subsequently, the NLP pipeline is executed on the FR/NFR
text file, resulting in the generation of annotations.

4. The annotations generated through the GATE Framework are sent back to
the JSP file using the GATE EMBEDDED code. Afterwards, the JSP file closes
the XGAPP file and proceeds to delete all the resources associated with the
GATE Framework. Finally, the JSP file ensures the proper termination of the
GATE by effectively closing the process.

38

4Qd peojumoQq

[39X3 30UBWLIOJUOD-UON peOjUMOQ]

|29X3 3duewLIOjuO) peojumoq

* Jasnayy wuojul |im JuaiDbuolyewingy 3yl ‘buiysyy st sa4e|d Jayjoue Ji

S|1e33p [2UCIPUOD

“Buiysy s1 J3Ae|d J3yjoue 1 JISNaY] wuoul [[im JualDbuolyewinp ayL

‘Buolyely Jo s3|ns 3sauiy) ay3 03 buipsodde sarow Aejd pinoys/jeys/|Iim 0D 3yl

Buissiw Ajjepop

*Buolyely 0 s3jn1 3sauyd ay3 03 Buipiodde saaow Aejd 31sNw 0D YL

‘aweb 3y3 uIyIm 3DUBISWNDID pue
U0I}ISOd JUILIND §, JISN Y] JAA0 YR} ||!m {0D JO Fweu Y3 AJads) / {waisis ayL}

wajsAs Jo wajsAsqns’anpow’|oo] o aweu
AJ2ads {Buissiw SI JWRU 5 WISAS ‘AInbique |eDUIRRY

‘aweb
Y3 UIYIIM IDURISLUNDIID PUR UOIISO JUILIND S, JISN Y3 JIAO)R] ||'M 0D SIYL

*aoejd 112Y3 ||y 0} SUIYDRLW SI3SN J3YJoue uo 0D
M3u e 232200 pnoys/jeys/|im {wajsAs ayl} ‘Ajaunjewsaad aweb 3y3 saAea| Jasn e 41

3210A anissed ul S| 3du3juss ayL

*aoejd 11343 ||y 03 AuIydew
SJ3SN J3yjoue UO P33B3LD SI 0D M3U e ‘Ajaunjewald 3web ay) s3ae3| Jasn 2§

*‘aweb i3Ae|d 3)Buis e U] "SODE J0j SS3004d 03 pa3u ||Im JuaDbuclyewngy 24y

awen
wW23SAS 310420 212p JUBPUNPIY SUIBJUOD JU3Wanbay

*SQDE 403 ssa20.4d 03 paau ||Im JuaiDbuolyeanyy 2y3 ‘aweb sa4eid 3jbuis e ug

" (02)
sjuauoddQ saandwo) Aue Joj Buissasosd ayy op |im wesboud Juaipbuclyeyyng 2y3

2210A 2AISSRd UI S| 20UUAS AYL

‘wesboud juaipbuclyewnyinpy
a3yl Aq auop 2q M (0D) sjuauoddp JaIndwo) Aue oy Buissasoud ayL

*aweb mau e 312310 ued Jaasasbuolyewniy 343 32y3 os Jaauasbuolyewnng 2y
03 UoijeWwIO Ul UoIjeSI|RIJIUI 3WweB SIYy3 puas pInoys/jjeys/j|im JuaiDBuoclyennng 3yL

Buissiw Ajijepop

*aweb m3u 2 332310 ued Janasbuclye N 343 1243 os Janiasbucliyeyngy
3yj 03 uonewWIo Ul uoesI|RIRIUl 3web sIy3 puas 3snw JuaiDbuclyew Ny YL

UOIIEPURWIWOIY

uoseay

juawaainbay

aouewlojuoduopN aejdwal

Jansasbuolyewiyny ay3

wouy sia4e|d asinbals

35 Jey] saweb Aue 40 35I| @ A3RJ |im JuRiDBuolyewiny ay3 ‘aweb Buisixa ue uiol 03 uoido 3y3 5329|3s Jasn © uaym

dn-Je3s 12 3|1y 12y3 Woly pess pue 3| B 0] S30U3J321d 3ALS 0] 3|ge 3q |m J3auasbuclye

3w 3yL

* dI BuIsn way) y3im 33ed1UNWwed pue s3uidBuolyengy Woly SUORIIUUCD MOJ[R ||IM JaAJaSOuclyewi N YL

JuaWwo.

bay

3ouewlojuo) arejdwsa)

d for FR conformance checking

ize
39

Wrapper tool util

Figure 7.4

Non-Functional requirements

Requirement Acceptance- Testable
criteria
ILs maximum size throughoul the mission life is expected Lo reach 10 GB. 10 CB Yes
The system should support a minimum of 100 concurrent users , combined from web-portal and mobile app 100 concurrent Yes
users
Very fast generation of bin (all geophysical parameters In |ess than 10 sec). less than 10 sec Yes
AOD should have error less than 20%. 20% Yes
The soltware should be able to generate data products with Largeled accuracy within project timelines (of 180 minutes including 100 minules of data 180 minutes Yes
acquisition) in a reliable manner.
Single server running with efficiency of 80 %. 80 % Yes
There sheuld be minimal failures in processing chain. NA No
The reason for the corresponding failure should be debugged vath least time to repair. NA No
The android app should be portable to 105 platform with mimimal efforts, NA No
The system should be secure, and any tempering of data should not be possible. NA No
Software shall be robust and fault tolerant. NA Ne

Downloac

Figure 7.5: Wrapper tool utilized for NFR testability checking

JSP File @
N\ s
Close Get Annotations
GATE NLP Annotations

S \

' {
2 @ Convert PDF to Open
2 TXT format GATE NLP
‘6 J \
s
s
< PDF

Document
Y
@ Tool User Interface @ IS WOIX
Display Upload Generate Run NLP Load txt file
A“":':;::I:s In Document Txt File Annotations Pipeline into LRs
k 1
Load
> Open Load
- NLP Modules -
Downloaded @I XGAPP File I | into PRs I | JAPE File
Results
FR/NFR Docs

- R ®

Requirement Analyst

Figure 7.6: Architecture of the tool

40

5. All the annotations are displayed in a tabular format within the UI of the
tool. This allows the requirement analyst to conveniently access and review

the results, facilitating analysis and evaluation of the generated annotations.

41

CHAPTER 8

Experimentation & Results

8.1 Selection of case studies

To evaluate the effectiveness of our approach, we conducted evaluations on a set
of 14 diverse SRS documents. Out of these, eight documents were sourced from
publicly available repositories [1], while our industry partner, SAC-ISRO, con-
tributed an additional six documents. Three fundamental criteria that guided the
selection of these eight documents are:

1. Ensuring coverage across diverse industrial domains.
2. Inclusion of requirements from both EARS and RUPPs templates.

3. Maintaining practical scalability in terms of the number of requirement state-
ments.

8.2 Manual examination of the case studies

This section discusses our process of examining the case studies to develop the
ground truth for analysis. First, we manually checked the FRs for Conformance,
Non-Conformance, recommendations, and NFRs testability. The thesis author did
the step and reviewed it with the supervisor for finalisation. Next, we used the

developed dataset to analyse the proposed approaches.

8.2.1 Algorithm for Conformance Checking

To perform the Manual TC Checking, we utilized an algorithm outlined in Algo-
rithm 1.

The algorithm used for manually verifying automatic recommendations re-
mains consistent with the conformance checking process. When evaluating the

42

recommended requirement using this algorithm, if it is determined to be TC, it is
deemed a correct recommendation. However, an additional factor is taken into
account: ensuring that the tool has not modified the meaning of the requirement
during the recommendation generation process. Conversely, if the recommended
requirement is classified as TNC by this algorithm OR the meaning of the require-
ment is altered in the recommended sentence, it is considered an incorrect recom-
mendation.

Algorithm 1 Manual inspection protocol for conformance checking [12]

1: Let R be the requirement being inspected for conformance to template T (either
Rupp’s or EARS).
Verify that R is a grammatically-correct sentence. Do not consider punctuation in
determining correctness.
if R is conditional then
Verify that the conditions appear only at the beginning of R.
Verify that the conditions conform to the structure prescribed by T.
end if
if T is Rupp’s template then
Verify that (system name), (object), and (whom) (when applicable) are filled by
noun phrases.
9: Verify that (process) is filled by a verb phrase.
10: else if T is EARS then
11: Verify that (system name) is filled by a noun phrase.
12: Verify that (system response) starts with a verb phrase.
13: end if
14: if all criteria are fulfilled then
15: R is Conformance to T;
16: else
17: R is not Conformance to T;
18: end if

N

AN S

8.2.2 Algorithm for Verifying Testability

The manual verification of NFR testability involves two steps (as shown in Algo-
rithm 2):

1) If an NFR sentence includes a number followed by any unit from the spec-
ified six classes (Time, Limit, Percentage, Speed, Frequency, Distance), then that
NER is considered to have acceptance criteria.

2) NFRs that contain acceptance criteria are classified as Testable, while all
other NFRs are categorized as Non-Testable NFRs.

43

Algorithm 2 Manual inspection protocol for verifying Testability

1: Let R be the NFR being inspected for testability.
2: Verify that R is a grammatically-correct sentence. Do not consider punctuation in
determining correctness.
if R includes a numeric value followed by a valid unit then
The acceptance criteria are present.
end if
if R contains Acceptance Criteria then
R is Testable;
else
R is Non-Testable;
10: end if

8.3 Analysis & Results

This section presents our analysis results and findings.

8.3.1 Conformance FRs

Figure 8.1 depicts the Confusion matrix utilized to assess the performance of the
approach concerning a given set of Conformance requirements. The matrix com-
prises a 2x2 table representing the two prediction classes, TC and TNC. This table
is structured into two dimensions, with one dimension representing the predicted
values generated by the tool and the other dimension representing the actual val-
ues derived from manual inspection. In cases where the FRs are actually in Con-
formance with the template but are inaccurately predicted as Non-Conformance
by the tool, these instances are categorized as False Negative (FN) cases. Con-
versely, if the tool predicts FRs as Conformance, but in reality, they are Non-
Conformance, these instances are identified as False Positive (FP). True Positive
(TP) cases arise when the tool correctly identifies a requirement as Conformance.
Similarly, when the tool correctly identifies a requirement as Non-Conformance,
it falls into the True Negative (TN) category.

We have computed and derived three distinct parameters by utilizing the val-
ues of TP, FP, TN and FN. These parameters provide valuable insights into perfor-

mance evaluation and analysis.

1. Precision, calculated as TP/(TP+FP), determines the proportion of TP pre-
dictions made by the tool out of all positive classes.

2. Recall, calculated as TP/(TP+FN), measures the proportion of TP predic-
tions out of the total number of actual positive classes.

+4

3. Accuracy, calculated as (TP+TN)/(TP+TN+FP+EN), evaluates the overall
correctness of the tool’s predictions by considering TP and TN cases in re-
lation to all classes. It provides an assessment of the tool’s performance in

predicting both positive and negative instances.

Predicted (Automatic)

Conformant Non-Conformant

Conformant True Positive(TP) |False Negative(FN)

Actual
(Manual)

Non-Conformant False Positive(FP) | True Negative(TN)

Figure 8.1: Confusion Matrix for conformance requirements

Table 8.1 presents the accuracy results for conformance requirements. Out of
a total of 1139 FRs, the tool predicts 355 requirements as TC. However, during
the manual inspection, 376 requirements are identified as TC. The table highlights
that the disparity in results is due to 21 FN predictions made by the tool. With the
exception of documents involving FN results, the Recall value is 1 for all other
documents. Notably, no FP predictions are observed, resulting in a precision
value of 1 for each document. For all the TC requirements, the tool yields an
average precision value of 1, indicating that all the positive predictions made by
the tool are accurate. The average recall value stands at 0.94, implying that the
tool successfully identifies 94% of the TC requirements out of the total actual TC
instances. Additionally, the average accuracy achieved by the tool for TC require-
ments reaches 0.98, reflecting a high level of correctness in its predictions.

8.3.2 Non-Conformance FRs

The performance evaluation of the approach in relation to a set of Non-Conformance
requirement is represented by Figure 8.2. This figure illustrates the Confusion
matrix, which consists of a 2x2 table that captures the two prediction classes, TC
and TNC. Instances classified as FN occur when the tool incorrectly predicts FRs
as Conformance, despite them being Non-Conformance with the template. On
the other hand, instances labelled as FP arise when the tool predicts FRs as Non-
Conformance, but they are actually Conformance. TP cases emerge when the
tool correctly identifies a requirement as Non-Conformance. Conversely, when

45

Table 8.1: Accuracy results for TC requirements

Figure 8.2: Confusion Matrix for Non-Conformance requirements

No.
No. Document of TC FP | TP | FN | TN | Rec. | Prec. | Acc.
Name Regs.
Regs.
1 | THEMAS 94 36 0 | 36 3 55 | 0.923 1 0.968
2 | Home 1.3 39 23 0 | 23 2 14 | 092 1 0.949
3 | Evlacorr 16 10 0 | 10 0 6 1 1 1
4 | Blit draft 23 9 0 9 0 14 1 1 1
5 | RLCS 105 62 0 | 62 1 42 | 0.984 1 0.990
6 | Hats 249 116 0 | 116 | 10 | 123 | 0.920 1 0.96
7 | ESA 14 5 0 5 0 9 1 1 1
8 | MultiMahjong 96 38 0 | 38 3 55 | 0.927 1 0.969
9 | DPGS 31 14 0 | 14 0 17 1 1 1
10 | EOS06_SCAT_SRS_V1.1 24 4 0 4 1 19 0.8 1 0.958
11 | DAT_v1.1_20may19 75 5 0 5 0 70 1 1
12 | O30CM3_V2.1_DRAFT 59 20 0 | 20 0 39 1 1
13 | solar-calc-india 28 4 0 4 0 | 24 1 1
14 | SGL_IGiS_V11 286 9 0 9 1 1276 | 09 1 0.996
Predicted (Automatic)
Non-Conformant Conformant
E g Non-Conformant True Positive(TP) |False Negative(FN)
< g Conformant False Positive(FP) | True Negative(TN)

the tool correctly identifies a requirement as Conformance, it falls under the TN

category.

The assessment of Non-Conformance requirements involves calculating three

key parameters: precision, recall, and accuracy. These parameters are determined

using the same formula for evaluating Conformance requirements.

Table 8.2 provides valuable insights into the accuracy assessment of TNC re-

quirements, showcasing the tool’s precision, recall, and overall accuracy in iden-

tifying TNC requirements with minimal discrepancies. Out of a total of 1139 FRs,

the tool identifies 784 requirements as TNC. However, upon manual inspection, it

is determined that 763 of these requirements are indeed TNC, indicating a slight

disparity between the tool’s predictions and the manual assessment.

46

Table 8.2: Accuracy results for TNC requirements
No.
No, | Decument of | ™C | EN| TN |FP | TP | Prec. | Rec. | Ace.
Name Regs.
Regs.

1 | THEMAS 94 58 0 | 36 | 3 |55 |0948 | 1 | 0.968
2 | Home 1.3 39 16 0 |23]2 |14 |0875| 1 0.949
3 | Evlacorr 16 6 0 10 | O 6 1 1 1
4 | Blit draft 23 14 0 9 0| 14 1 1 1
5 | RLCS 105 43 0 | 62 | 1 | 42 |0976 | 1 0.990
6 | Hats 249 133 0 [116 | 10 | 123 | 0925 | 1 0.96
7 | ESA 14 9 0 5 0 9 1 1 1
8 | MultiMahjong 96 58 0 | 38 | 3 |55 |0948| 1 |0.969
9 | DPGS 31 17 0 |14 | 0 | 17 1 1 1
10 | EOS06_SCAT_SRS_V1.1 | 24 20 0 4 1|19 | 09 1 |0.958
11 | DAT_v1.1_20may19 75 70 0 5 0| 70 1 1 1
12 | O30CM3_V2.1_DRAFT | 59 39 0 20| 0 | 39 1 1 1
13 | solar-calc-india 28 24 0 4 | 0|24 1 1 1
14 | SGL_IGiS_V11 286 277 0 9 1 1276 109% | 1 |0.9%

The average precision value achieved is 0.97, indicating that the tool correctly
identifies the majority of Non-Conformance requirements. Similarly, the average
recall value stands at 1, implying that the tool successfully captures all TNC re-
quirements without missing any. Furthermore, the average accuracy achieved by
the tool is 0.98, reflecting its overall correctness in predicting the conformity of re-
quirements. This high accuracy score demonstrates the tool’s ability to distinguish
between Conformance and Non-Conformance requirements effectively. There are
21 cases classified as FP, which correspond to 21 FRs that actually conform to the
template structure and are TC. However, the tool erroneously identifies them as
TNC, resulting in incorrect labelling of these requirements as Non-Conformance.
This discrepancy in the predictions introduces a minor inconsistency in the as-

sessment results. There are two reasons for FP results:

1. POS Tagger Problem: Out of the 21 cases where FP results were observed,
seven instances were attributed to inaccurate token tagging performed by
the POS tagger. In these cases, the FP classification arose due to errors in the
process of assigning appropriate POS tags to the tokens.

2. Parser Problem: This contributes to the remaining 14 cases of FP. In these in-
stances, the FP occurrence can be attributed to the parser’s limitations in ac-
curately identifying complex noun phrases that represent the system name.

47

The parser struggles to correctly parse and comprehend the intricate struc-
ture and context of these noun phrases, resulting in misclassifications and
FP predictions.

For example, in the requirement, "Display windows opened by the system
shall have buttons for closing the windows." The phrase Display windows
opened by the system can be described as a complex noun phrase or the
name of the system. However, due to limitations in the parser’s capabili-
ties, it fails to recognize this and instead identifies the system as the system
name. As a result, the JAPE Rules categorize this requirement as TNC be-
cause it considers the preceding phrase "Display windows opened by" as
redundant information appearing before the system name. Consequently, it
provides recommendations based on this categorization.

8.3.3 Recommendations

The accuracy results for recommendations are shown in Table 8.3. We have per-
formed evaluations of recommendations provided by the approach on a total of
302 TNC requirements. Among these requirements, the tool successfully pro-
vided correct recommendations for 239 of them, while generating 18 partially
correct recommendations and 45 incorrect recommendations. This translates to
an average accuracy of 83.99%, showcasing the tool’s effectiveness in delivering
the recommendations.

Reason for missing, incorrect and partially correct recommendations:

1. Missing recommendations: In order for the rule-based system to gener-
ate recommendations, it is essential that the requirements are written in the
specified format defined by the RUPPs and EARS Template. Major devia-
tions from this format make it impossible for the system to generate accurate
recommendations. To ensure the integrity of our recommendation evalua-
tions, we have excluded these requirements from our analysis. Additionally,
we have removed all 21 FP cases to obtain more precise and reliable accuracy
results.

2. Incorrect recommendations: Based on our observations and analysis of the
generated results, we have identified three potential reasons for incorrect
recommendations.

48

Table 8.3: Accuracy results for Recommendations

Z
5

Partially Correct
Document Name | Recs. | Correct Recs. Accuracy

Recs.

O 0 NN N Gk W N

THEMAS 47 42 2 0.94
Home 1.3 14 11 0 0.78
0.83
1
0.79
0.84
0.78
0.89
0.70

Evla corr 6 2

Blit draft 14 13
RLCS 39 30
Hats 112 90
ESA 9 7

MultiMahjong 44 32
DPGS 17 12

S N O B = o= W

—
(Y]
~

(b)

Complex Noun identification problem: Within the context of Non-
Conformance requirements, an incorrect recommendation occurs when
the rule pattern specified for recommendation is applied exclusively to
a portion of the requirement, rather than the entire requirement sen-
tence because of the issue in the results generated by the parser. As de-
picted in Figure 8.3, in requirement R1, the intended object is "the num-
ber of levels of children added to the displayed graph." However, due
to limitations in the parser, the tool fails to identify this complex noun
phrase accurately and mistakenly annotates "the displayed graph" as
the object. Consequently, only a portion of the sentence is matched by
the JAPE Rule for recommendation generation, leading to an erroneous

recommendation being generated.

Matched Pattern for Recommendation: displayed graph shall be de-
termined by the application configuration.

Incorrect Recommendation: The application configuration shall deter-
mine the displayed graph.

More than one Verb Phrase in a single requirement: When a require-
ment contains multiple Verb Phrases, there is a possibility for the JAPE
Rules to erroneously match an incorrect pattern due to this confusion.
An example from this category is illustrated below:

Requirement: All files in the application directory, including all subdi-

rectories, shall be copied to the new directory, and the new directory

49

shall become the currently selected application.

Incorrect Recommendation: The new directory shall become the cur-
rently selected application, All files in the application directory, includ-
ing all subdirectories, shall be copied to the new directory, and.

The reason for the incorrect recommendation is that the rule incorrectly
identifies the entire highlighted phrase in red as redundant data, which
is the portion preceding the Noun Phrase, that is, "The new directory".
Due to its limitation in understanding the correct context of the require-
ment, the rule-based system mistakenly identifies this Noun Phrase as
the System name, which appears before the Verb Phrase "shall become".
But, the actual Verb Phrase for the requirement is "shall be copied".
The correct recommendation for the requirement is: {The System}
shall copy all files in the application directory, including all subdirecto-
ries to the new directory, and the new directory shall become the cur-
rently selected application.

Condition Obiect

(AN Object

\
))) r A
R1: When a displayed node is expanded, the number of levels of children added to the displayed graph
shall be determined by the application configuration.
Passive System name
voice

Figure 8.3: Complex Noun identification problem

3. Partially correct recommendations: A situation of partially correct recom-
mendation arises when a requirement fails to conform to the template due
to any two underlying reasons. In such cases, during the initial run of the
tool, one of the reasons is successfully identified, and a recommendation is
provided based on that particular reason. However, despite this recommen-
dation, the second reason remains unchanged and unaddressed. One such

instance from this category is exemplified below:

Requirement: The user’s screen is then updated to display these changes.
This Requirement is not Conformance to the template, and the reasons for
Non-Conformance are ‘Incorrect Modal” and 'Passive voice’. The recom-
mended requirement after the first iteration of the tool run is:

Partially correct Recommendation: The user’s screen will/shall /should be

50

Table 8.4: Two iterations for partially correct recommendations

Requirement

First iteration

Second iteration

The MultiMahjongClient
must inform the user if

another player is fishing.

The MultiMahjongClient
shall inform the user if

another player is fishing.

If another player is fishing,
The MultiMahjongClient

shall inform the user.

If there is no line after
the current line,
the cursor is not moved.

If there is no line after
the current line, the cursor
will be not moved.

If there is no line after the
current line, {The system}

will not move the cursor.

In order to provide an
operational history and
statistical reports, this
process shall generate
anevent.

This process shall generate an
event In order to
provide an operational history

and statistical reports.

{The system} / {Specify the
name of process} shall
generate an event In order
to provide an operational

history and statistical reports.

The system shall generate
a standard confirmation
message after saving data
and warning messages
after the cancel

or close button is clicked.

After the cancel or close
button is clicked, The system
shall generate a standard
confirmation message

after saving data and
warning messages.

After the cancel or close
button is clicked, after
saving data and warning
messages, The system
shall generate a standard
confirmation message.

then updated to display these changes.

In this case, the recommendation is partially correct as it addresses the in-

correct modality error but fails to rectify the passive voice issue. The second

iteration of the tool run on this requirement would give the correct recom-

mendation:

Correct Recommendation: {The system} will then update the user’s screen

to display these changes.

Out of the 18 partially correct recommendations, we conducted a rerun of

all the requirements in the tool and obtained the correct recommendations

thereafter. This indicates that two iterations of the tool run yield improved

results. Table 8.4 showcases a few examples of these requirements.

8.3.4 Testable/Non-Testable NFRs

Figure 8.4 presents the confusion matrix utilized to assess the accuracy of testa-

bility results. This matrix consists of a 2x2 table that represents two potential pre-

diction classes: Testable and Non-Testable. One axis of the table corresponds to

the predicted values generated by the tool, while the other axis represents values

51

derived from the manual inspection of NFRs.

FN instances arise when certain NFRs, which actually contain the acceptance
criteria and are Testable, are incorrectly labelled as Non-Testable by the tool. On
the other hand, FP instances occur when NFRs that are truly Non-Testable, are
erroneously identified as Testable by the tool. TP instances emerge when the tool
correctly predicts NFRs as Testable when they are indeed Testable in reality. Fi-
nally, TN instances occur when the tool accurately identifies Non-Testable NFRs
as Non-Testable.

Predicted (Automatic)

Testable Non-Testable
=
z Testable True Positive(TP) False Negative(FN)
g Non-Testable False Positive(FP) True Negative(TN)
=
<<

Figure 8.4: Confusion matrix for measuring accuracy of testability checking

Table 8.5 provides detailed information about the precision, recall, and overall
accuracy achieved by the tool in the classification of NFRs.

Table 8.5: Accuracy results for NFR testability checking

Document Name NFR | FP | TP | FN | TN | Prec. | Rec. | Acc.
EOS06_SCAT_SRS_ V11| 46 | 0 | 4 | 0 | 42 1 1 1
DAT_v1.1_20may19 17 | 0| 1 | 0 |16 1 1 1
SGL_IGiS_V11 18 [0| 0| O |18 1 1 1

O30CM3_V2.1_ DRAFT | 74 | 0 | 13 | 3 | 58 1 0.81 | 0.96
solar-calc-india 4 01 0 3 1 1 1

DPGS 8 | 0 | 6 | 4 |77 1 0.6 | 095

Total 246 | 0 | 25| 7 |214| 1 0.90 | 0.98

During the analysis of 246 NFRs, the tool identifies 221 requirements as Non-
Testable. However, upon manual examination, it is discovered that out of these
221 requirements, only 214 are indeed Non-Testable. The results demonstrate
an absence of FP instances, indicating that the tool consistently identifies Non-
Testable NFRs accurately, never mislabeling them as Testable. Every NFR clas-

52

sified as Testable by the tool is indeed Testable. Conversely, there are seven in-
stances of FN, signifying that the tool occasionally fails to recognise requirements
as Testable when, in reality, they are Testable.

The tool shows good performance with an average precision score of 1, indi-
cating the absence of any FP instances. Moreover, it achieves an average recall
value of 0.90, underscoring its ability to identify a significant portion of Testable
requirements accurately. The overall average accuracy of 98% further suggests
the tool’s reliability in accurately categorising NFRs.

53

CHAPTER 9

Conclusion and Future work

In this thesis, we have introduced a tool-assisted approach for checking the con-
formance of FRs to RTs and providing recommendations for Non-Conforming
FRs. Our evaluation included 1,139 FRs from fourteen SRS documents to assess
the accuracy of the conformance checking results. We also examined 302 require-
ments flagged as TNC to evaluate the accuracy of the recommendation results.
The results demonstrate an average accuracy of 98% for conformance classifica-
tion, confirming the tool’s reliability in effectively classifying FRs. Furthermore,
the generated recommendations showcased an average accuracy of 83.99%, high-
lighting the tool’s effectiveness in guiding Non-Conforming requirements.

In addition, the tool includes a feature for verifying the testability of NFRs by
assessing the presence of acceptance criteria. To evaluate the testability results,
we examined 246 NFRs across six documents. Remarkably, the tool achieved an
average accuracy of 98% in accurately classifying NFRs based on their testability.

In terms of future work, our plans involve enhancing the tool’s accuracy by in-
corporating advanced Machine Learning techniques into its framework. By lever-
aging the power of Machine Learning, we aim to refine the tool’s capabilities and
ensure even more precise results in the recommendation generation process. Ad-
ditionally, we intend to expand the work’s scope by introducing additional RTs.
This expansion will involve integrating specific JAPE rules and modifying the
NLP Pipeline used for analysis. These updates will allow the tool to handle a
wider range of requirements, domains, and contexts, enhancing its effectiveness.

54

References

[1] Dataset. [online]. available:. https://zenodo.org/record/1414117#
.Y8JznuxBw_W/.

[2] Gate morphological analyzer. https://gate.ac.uk/sale/tao/splitch23.
html#x28-50100023.10.

[3] Numbers tagger. https://gate.ac.uk/sale/tao/splitch23.html#sec:

misc-creole:numbers:numbers.

[4] Reta: Requirements template analyzer. http://sites.google.com/site/
retanlp/.

[5] Stanford named entity recognizer (ner). [online]. available:. https://nlp.
stanford.edu/software/CRF-NER.shtml.

[6] Stanford parser. [online]. available:. https://nlp.stanford.edu/software/

lex-parser.shtml.

[7] Stanford ptb tokenizer. [online]. available:. https://nlp.stanford.edu/

software/tokenizer.shtm.

[8] Stanford log-linear part-of-speech tagger [online]. available:. https://nlp.
stanford.edu/software/tagger.shtml, 2003.

[9] Rqa: The requirements quality analyzer tool. [online]. available. http://

WwWw.reusecompany . com/rqa, 2012.
[10] Apache opennlp. [online]. available:. https://opennlp.apache.org/, 2013.

[11] Gate annie: A nearly-new information extraction system. [online]. available:.
https://gate.ac.uk/sale/tao/splitch6.html, 2014.

[12] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer. Automated checking of
conformance to requirements templates using natural language processing.
IEEE Transactions on Software Engineering, 41(10):944-968, 2015.

55

[13] L. Bass, P. Clements, and R. Kazman. Software architecture in practice.
Addison-Wesley Professional, 2003.

[14] D. M. Berry. Ambiguity in natural language requirements documents. Springer
Berlin Heidelberg, 2008.

[15] E. Chantree, B. Nuseibeh, A. De Roeck, and A. Willis. Identifying nocuous
ambiguities in natural language requirements. In 14th IEEE International Re-
quirements Engineering Conference (RE'06), pages 59-68. IEEE, 2006.

[16] L. Chungand]. C.S. do Prado Leite. On non-functional requirements in soft-
ware engineering. Conceptual modeling: Foundations and applications: Essays in
honor of john mylopoulos, pages 363-379, 2009.

[17] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. Gate: A frame-
work and graphical development environment for robust nlp tools and ap-
plications. 07 2002.

[18] C. Denger, D. Jorg, and E. Kamsties. Quasar: A survey on approaches for
writing precise natural language requirements. Fraunhofer IESE, 2001.

[19] S. Desikan and G. Ramesh. Software testing: principles and practice. Pearson
Education India, 2006.

[20] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. An automatic quality evalua-
tion for natural language requirements. 1, 01 2001.

[21] H. L. D. Fabian, de Bruijn. Ambiguity in natural language software requirements:
A case study. Springer Berlin Heidelberg, 2010.

[22] S. Farfeleder, T. Moser, A. Krall, T. Stalhane, H. Zojer, and C. Panis. Dodt:
Increasing requirements formalism using domain ontologies for improved
embedded systems development. In 14th IEEE International Symposium on
Design and Diagnostics of Electronic Circuits and Systems, pages 271-274, 2011.

[23] A.Fatwanto. Software requirements specification analysis using natural lan-
guage processing technique. pages 105-110, 06 2013.

[24] D. Firesmith. Analyzing and specifying reusable security requirements. Jour-
nal of Object Technology - JOT, 01 2003.

[25] G. Génova, J. M. Fuentes, J. Llorens, O. Hurtado, and V. Moreno. A frame-
work to measure and improve the quality of textual requirements. Require-
ments engineering, 18:25-41, 2013.

56

[26] D. Graham, E. Veenendaal, I. Evans, and R. Black. Foundation of software
testing, 2007.

[27] D. M. Hamish Cunningham. Developing language processing components
with gate version 9 (a user guide). https://gate.ac.uk/sale/tao/tao.pdf,
2011.

[28] Z. A. Hamza and M. Hammad. Generating uml use case models from soft-
ware requirements using natural language processing. In 2019 8th Interna-
tional Conference on Modeling Simulation and Applied Optimization (ICMSAO),
pages 1-6. IEEE, 2019.

[29] C.Huertas and R. Judrez-Ramirez. Nlare, a natural language processing tool
for automatic requirements evaluation. pages 371-378, 09 2012.

[30] M. Kamalrudin, N. Mustafa, and S. Sidek. A Template for Writing Security
Requirements, pages 73-86. 01 2018.

[31] M. Kassab, C. Neill, and P. Laplante. State of practice in requirements engi-
neering: Contemporary data. Innovations in Systems and Software Engineering:
A NASA Journal, 12 2014.

[32] N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry. Requirements for tools
for ambiguity identification and measurement in natural language require-
ments specifications. Requirements engineering, 13:207-239, 2008.

[33] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak. Easy approach to re-
quirements syntax (ears). pages 317 — 322, 10 2009.

[34] D. Mellado, E. Fernandez-Medina, and M. Piattini. A comparative study
of proposals for establishing security requirements for the development of
secure information systems. pages 1044-1053, 05 2006.

[35] J. Metsa, M. Katara, and T. Mikkonen. Testing non-functional requirements

with aspects: An industrial case study. In Seventh International Conference on
Quality Software (QSIC 2007), pages 5-14, 2007.

[36] L. Mich, M. Franch, and P. L. Novi Inverardi. Market research for require-
ments analysis using linguistic tools. Requirements Engineering, 9:40-56, 01
2004.

57

[37] P. More and R. Phalnikar. Generating uml diagrams from natural language
specifications. International Journal of Applied Information Systems, 1:19-23, 04
2012.

[38] F.Nazir, W. H. Butt, M. W. Anwar, and M. A. Khan Khattak. The applications
of natural language processing (nlp) for software requirement engineering-a
systematic literature review. Information Science and Applications 2017: ICISA
2017 8, pages 485-493, 2017.

[39] P. Oliveira Antonino, M. Trapp, P. Barbosa, and L. Sousa. The parameterized
safety requirements templates. 06 2015.

[40] O. Ormandjieva, I. Hussain, and L. Kosseim. Toward a text classification
system for the quality assessment of software requirements written in natural
language. pages 3945, 09 2007.

[41] M. Osama, A. Zaki-Ismail, M. Abdelrazek,]. Grundy, and A. Ibrahim. Score-
based automatic detection and resolution of syntactic ambiguity in natural
language requirements. In 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 651-661, 2020.

[42] K. Pohl. Requirements Engineering: Fundamentals, Principles, and Techniques. 01
2010.

[43] K.Pohland C. Rupp. Requirement engineering fundamentals. https://www.
bbau.ac.in/dept/dit/TM/requirementsengi.pdf, 2011.

[44] R. S. Pressman. Software engineering: a practitioner’s approach. Palgrave
macmillan, 2005.

[45] A. Rashwan. Automated quality assurance of non-functional requirements for
testability. PhD thesis, Concordia University, 2015.

[46] M. Riaz, J. King, J. Slankas, L. Williams, F. Massacci, C. Quesada-Lépez, and
M. Jenkins. Identifying the implied: Findings from three differentiated repli-
cations on the use of security requirements templates. Empirical Software En-
gineering, 22:1-52, 08 2017.

[47] C. Rolland and C. Proix. A natural language approach for requirements en-
gineering. Seminal Contributions to Information Systems Engineering: 25 Years
of CAiSE, pages 35-55, 2013.

58

[48] Roman. A taxonomy of current issues in requirements engineering. Com-
puter, 18(4):14-23, 1985.

[49] C. Rupp et al. Requirements engineering und-management: Professionelle,
iterative anforderungsanalyse fiir die praxis. 5. Aufl., Miinchen/Wien: Hanser,
2009.

[50] K. Ryan. The role of natural language in requirements engineering. 02 1970.

[51] V.S.Sharma, R. Ramnani, and S. Sengupta. A framework for identifying and
analyzing non-functional requirements from text. 4th International Workshop
on the Twin Peaks of Requirements and Architecture, TwinPeaks 2014 - Proceedings,
06 2014.

[52] P. Singh. Treating nfr as first grade for its testability. Journal of Software Engi-
neering and Applications, 05:991-1000, 01 2012.

[53] A. Sleimi, M. Ceci, M. Sabetzadeh, L. Briand, and J. Dann. Automated rec-
ommendation of templates for legal requirements. pages 158-168, 08 2020.

[54] T. Tahvonen and E. Uusitalo. Easy approach to requirements syntax in nu-
clear power plant safety design. pages 1-2, 08 2018.

[55] A. Tripathy, A. Agrawal, and S. K. Rath. Requirement analysis using natural
language processing. In Fifth International Conference on Advances in Computer
Engineering, volume 26, page 27, 2014.

[56] A. Veizaga, E. Alférez Salinas, D. Torre, M. Sabetzadeh, and L. Briand. On
systematically building a controlled natural language for functional require-
ments. Empirical Software Engineering, 26, 07 2021.

[57] S. Withall. Software requirement patterns. Pearson Education, 2007.

[58] H. Yang, A. de Roeck, V. Gervasi, A. Willis, and B. Nuseibeh. Extending
nocuous ambiguity analysis for anaphora in natural language requirements.

In 2010 18th IEEE International Requirements Engineering Conference, pages 25—
34, 2010.

[59] E. Yu. Towards modelling and reasoning support for early-phase require-
ments engineering. In Proceedings of ISRE '97: 3rd IEEE International Sympo-
sium on Requirements Engineering, pages 226-235, 1997.

59

[60] F. Zait and N. Zarour. Addressing lexical and semantic ambiguity in natural
language requirements. In 2018 Fifth International Symposium on Innovation in
Information and Communication Technology (ISIICT), pages 1-7, 2018.

60

