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Abstract 

In Medical Imaging of the brain, especially Magnetic Resonance Imaging (MRI), 

localizing various anatomical landmarks like the Anterior and Posterior Commissure 

(A.C./P.C.) and Mid-Sagittal plane (MSP) is crucial for good quality MRI. By 

convention, during brain MRI scan acquisition, the radiographer first performs a three-

plane MRI localizer slice acquisition protocol to obtain these landmarks. This process 

is called Scout Scan. However, this is a tedious job and is susceptible to operator error. 

Also, the MRI scan’s resolution is anisotropic, i.e., good in-plane and lower out-of-

plane resolution. As a result, a change in head position might significantly impact the 

interpretation of an MRI \ image. Hence, Automizing this process is vital to reduce 

operator error.  

Previous works predict A.C. and P.C. points in the Mid-sagittal plane, but the 

improper head position may lead to an improper Mid-sagittal plane (MSP). Hence, it 

may lead to localization errors. Also, previous works predict this point in a 3D voxel, 

which is impractical. To obtain a 3D voxel, longer time and computational resources 

are required. Furthermore, G.E.’s healthcare system has developed a similar tool 

named “AIRx, but it takes 9 to 20 Localizer slices to predict these landmarks. 

This work presents the deep learning-based automated localizing of these landmarks 

in 3D space for the brain from a three-plane 2D MRI localizer slice. This work uses six 

publicly available brain MRI datasets and a few image augmentation techniques. The 

mean error in localization of A.C. and P.C. within the dataset is less than 1mm. For 

cross dataset, it is less than 2mm, and also mean error in degrees for finding orientation 

vector is less than 2° for both within and cross dataset. 
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CHAPTER 1  

Introduction 

Consistent and uniform placement of the MR slices during MR neuroimaging is critical 

for performing inter- and intra-scan comparisons. MRI resolution is often anisotropic, 

i.e., a good “in-plane” resolution and a reduced “out-of-plane” resolution are 

frequently found in MRI scans with varying resolutions and orientations[1]. The 

difference in the subject’s positioning is unavoidable. If this deviation is more 

prominent from the desired head orientation, it may cause severe difficulties in 

interpreting the image obtained from MRI[2]. For example, Reuter et al.,2014 

demonstrated in their work that the differences in head position might significantly 

impact tumor region area measurements[1], [3]. Hence, for accurate positioning of the 

brain MRI, identification of anatomical landmarks such as anterior commissure (A.C.), 

posterior commissure (P.C.), and mid-sagittal plane (MSP) are necessary[2]. 

Consequently, before conducting a full MRI scan, a three-plane localizer MR 

scan (also known as a scout scan) is typically performed by radiographers to identify 

specific landmarks in the sagittal, coronal, or horizontal planes[4], [5]. This process has 

often been done manually, which is time-consuming and error-prone because of inter-

operator variability. To address this issue, automating the MR slice orientation and 

positioning process could help reduce operator inconsistency, enhance accuracy, and 

potentially reduce the overall duration of the scan. 

The A.C., P.C., and MSP are significant landmarks that help to characterize the 

brain's anatomical coordinates[6]–[8]. Further, these landmarks have substantial 

applications in various neuro-surgical procedures such as deep brain stimulation[9] , 

image registration [10], and human brain mapping [11]. Many model-based techniques 

have been published priorly to automate the detection of these anatomical landmarks, 

where A.C. and P.C. locations were identified using template matching[12]–[14]. 

Recently, Yuan Liu and Benoit Dawant have used Regression Forest to automate A.C., 

P.C., and MSP localization in MRI scans[15]. Deep learning algorithms have recently 

gained popularity in various medical image analytics [16]–[18]. Many deep learning-

based algorithms have also been used to detect A.C. and P.C. anatomical landmark 

detection in the 2D scan [1], [19] or 3D MRI Volume[15], [20]. In a three-plane MRI 

localizer (scout) scan, we have three 2D brain MRI slices. The goal is to localize A.C. 

and P.C. in a mid-sagittal brain MRI slice and to make an angle prediction. 
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1.1 Problem Statement and Motivation 

1.1.1 Problem Statement 
In previous works, the prediction of the A.C. and P.C. points has primarily focused on 

the mid-sagittal plane[1], [19]. However, a significant limitation of this approach arises 

from the potential for improper head positioning, which can result in an inaccurate 

mid-sagittal plane (MSP) estimation. Consequently, A.C. and P.C. landmarks 

localization may be prone to errors. 

Moreover, previous methodologies often rely on predicting these landmarks in 

a 3D voxel [15]. However, this is not feasible, as it necessitates a significant amount of 

time to procure a complete 3D voxel image. This time-consuming process can impede 

the efficiency of the localization task and limit its clinical applicability. 

It is worth noting that G.E.'s healthcare system has developed a similar tool known as 

"AIRx"[21]., which also aims to predict A.C. and P.C. landmarks. However, this tool 

requires the utilization of 9 to 20 localizer slices for accurate prediction. This 

substantial number of slices further adds to the complexity and resource requirements 

of the process. 

1.1.2 Motivation 
Considering these limitations in the existing approaches, there is a need to 

develop a more robust and efficient methodology for predicting A.C. and P.C. points. 

This methodology should address the challenges associated with improper head 

positioning, the practicality of 3D voxel-based prediction, and the resource-intensive 

nature of current tools such as "AIRx." By addressing these issues, the proposed 

methodology aims to enhance the accuracy, efficiency, and clinical utility of A.C. and 

P.C. localization in neuroimaging applications. Deep convolution neural networks are 

used in the current study to predict A.C. and P.C. landmarks in 3D space directly from 

a three-plane MRI localizer slice. Deep learning applications for medical imaging have 

significant difficulties with data variability and repeatability [22], [23]. Deep learning-

based methodologies are also susceptible to data bias [24], [25].  

Therefore, this work aims to directly predict the A.C., P.C., and Orientation 

vector in the 3D space from three-plane 2D MRI Localizer slices using Deep 

Convolutional Neural Network. Further, we evaluated our model with a cross-dataset 

to analyze its generalization capabilities and resolve the issue of data bias. 

1.2 Contributions 

Our work contributes to the field of MRI neuroimaging by introducing a robust 

methodology for automated landmark localization using a deep convolutional neural 

network. The proposed approach enhances the accuracy of anterior and posterior 

commissure (A.C. and P.C.) landmark prediction by considering potential head 



3 

 

positioning deviations. Further, this methodology directly predicts A.C. and P.C. 

landmarks in 3D space from three-plane 2D MRI localizer slices, hence addressing the 

challenge of computational complexity and enhancing the practicality and 

applicability of automated landmark localization in a real-world application. 

Furthermore, the cross-dataset evaluation ensures the method's generalization 

capabilities and minimizes data bias, reinforcing its reliability in diverse clinical 

settings. Ultimately, these contributions advance neuroimaging analyses, offering a 

practical and impactful solution for improved patient care and clinical decision-

making by improving efficiency without compromising accuracy. 

 

1.3 Organization of Thesis 

Six chapters make up the structure of this thesis as below: 

Chapter 2: "Fundamentals" deals with the fundamental concepts and theoretical 

foundations crucial for this study.  

Chapter 3: "Literature Survey," presents a comprehensive review of relevant literature 

and studies on A.C. and P.C. localization in neuroimaging. This chapter explores 

previous research works, methodologies, and advancements in the field. 

Chapter 4: "Methodology," shows the proposed methodology for A.C., P.C., and 

Orientation Vector prediction in detail. 

Chapter 5: "Implementation," focuses on the practical aspects of implementing the 

proposed methodology. 

Finally, Chapter 6: "Discussion and Conclusion," provides a comprehensive analysis 

and interpretation of the results obtained from the implementation. 
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CHAPTER 2  

Fundamentals 

This chapter delves into the fundamental concepts and theoretical foundations that 

form the basis of the research. This chapter provides an in-depth discussion of key 

topics such as "MRI Scan Acquisition", "Importance of MRI Orientation", "Scout Scan", 

and "K-Space". Understanding these fundamental concepts is crucial for 

comprehending the subsequent chapters and the proposed methodology. 

2.1 MRI Scan Acquisition 

In this section, we have explained the basic principles of MRI scan acquisition.  

2.1.1 Basic Principle 
MRI is a medical imaging method used in radiology to see the human body's 

physiology, including its anatomy, in both health and disease. MRI acquisition is based 

on the magnetic properties of certain atomic nuclei, particularly the hydrogen nucleus 

(proton). When a patient is placed in the powerful magnetic field of an MRI scanner, 

the hydrogen nuclei align themselves partially with the magnetic field, akin to a 

magnetic compass[26]. 

To manipulate these aligned nuclei and generate a measurable signal, radio 

waves emitted by the MRI scanner are used. The radio waves have a specific frequency 

corresponding to the hydrogen nuclei's Larmor frequency. The aligned hydrogen 

nuclei can be rotated or "flipped" by applying radio waves at the appropriate 

frequency and orientation[27]. 

Once the radio wave is turned off, the hydrogen nuclei return to their 

equilibrium state and emit radio signals in the form of electromagnetic radiation. 

These emitted signals are picked up by antennas or receiver coils surrounding the 

patient. The strength and timing of these radio signals provide information about the 

local tissue characteristics. 

The acquired radio signals contain valuable data about the spatial distribution 

of the hydrogen nuclei and their magnetic properties. However, the signals are initially 

represented in a mathematical space called "k-space." K-space is a matrix-like 

representation where each point corresponds to a specific frequency and phase. A 

mathematical process called the Fourier transform is applied to convert the data from 

k-space into a visual representation of the anatomical structures to obtain the final 

image[28]. 
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2.1.2 Components of MRI Machine 
The MRI machine consists of four major components, each playing a crucial role in 

imaging. These components are the Main Magnet, Gradient Coils, Radio Frequency 

Transmitter/Receiver Coils, and the Computer System. The following is an expanded 

description of each component, highlighting their significance and functions within 

the MRI system. 

1. Main Magnet:  

The Main Magnet is a fundamental component of the MRI machine, formed by 

superconducting coils. These coils generate a strong, uniform magnetic field 

that is essential for the functioning of MRI. The magnetic field strength is 

typically measured in Tesla (T) and can range from 1.5T to 7T in modern MRI 

systems. The Main Magnet provides the magnetic field to align the hydrogen 

nuclei within the patient's body, facilitating the subsequent imaging 

process[26]. 

2. Gradient Coils: 

Gradient Coils are a set of smaller, specialized coils positioned within the Main 

Magnet. These coils produce controlled variations in the magnetic field strength 

along different spatial directions, typically the x, y, and z axes. By varying the 

strength and timing of these magnetic field gradients, the Gradient Coils enable 

spatial encoding, allowing precise localization of signals emitted by the 

hydrogen nuclei. This spatial information is crucial for generating detailed 

images and differentiating structures within the imaged area[27]. 

3. Radio Frequency Transmitter/Receiver Coils:  

The Radio Frequency (RF) Transmitter/Receiver Coils serve as the interface 

between the MRI machine and the patient. The RF Transmitter coil emits radio 

waves at a specific frequency and orientation, targeting the hydrogen nuclei 

within the imaged region. These radio waves manipulate the hydrogen nuclei 

effectively, altering their alignment and generating a detectable signal. The RF 

Receiver coil, positioned around the patient, captures the emitted radio signals 

and transmits them for processing and image reconstruction to computer 

systems[26]. 

4. Computer System:  

The Computer System is the central component that controls the MRI machine's 

operation, acquisition parameters, and data processing. It coordinates the 

interplay of the Main Magnet, Gradient Coils, and RF Coils to generate high-

quality MRI images. The computer system also performs complex mathematical 

operations, such as Fourier transform and image reconstruction, to convert the 

acquired raw data into visual representations of the anatomical structures. 

Furthermore, the computer system provides a user interface for the operator to 

interact with the MRI machine, set imaging parameters, and monitor the 

scanning process[26]. 
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2.1.3 MRI Slice Selection 
One crucial step in MRI scan acquisition is Slice Selection, which determines the 

orientation of the slice to be acquired. MRI can acquire images in any desired 

orientation, allowing flexibility in examining various anatomical structures. 

To achieve slice selection, a frequency-selective RF pulse is utilized in 

conjunction with one of the magnetic field gradients, namely Gx, Gy, or Gz(Figure 2.1). 

These gradients are responsible for spatial encoding and determining the slice location 

within the imaging volume[27]. 

During the slice selection process, the frequency-selective RF pulse is applied in 

the presence of the desired gradient, which corresponds to the desired slice 

orientation. The RF pulse is designed to selectively excite the spins within the chosen 

slice while suppressing the signals from other slices. This selective excitation is 

achieved by adjusting the RF pulse's frequency and timing parameters to match the 

spins' resonant frequency within the targeted slice. 

Upon excitation, the spins within the selected slice enter a transient high-energy 

state and start to precess. Subsequently, the MRI system measures the resulting signals 

emitted by these excited spins using the receiver coils. The acquired signal data 

contains spatial and frequency information specific to the selected slice. 

Slice selection, along with other pulse sequences and imaging parameters, plays 

a crucial role in obtaining high-quality MRI images. It allows for the precise 

localization of the imaging slice within the three-dimensional anatomical space, 

enabling detailed examination of specific regions of interest. 

 
Figure 2.1 Different Orientation of Image Acquizition 
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2.2 Importance of MRI Orientation 

MRI image resolution exhibits an anisotropic nature. This implies that there is a 

variation in resolution along different spatial dimensions. MRI tends to have good "in-

plane" resolution while lower "out-plane" resolution[1]. 

The variation in resolution can occur due to unavoidable differences in subject 

positioning during MRI scans. MRI images are typically reviewed as 2D slices. Any 

alterations in head orientation can significantly impact the accurate interpretation of 

these images. If this deviation is prominent, then it may severely pose a challenge in 

interpreting these images[2]. Hence, it is crucial to ensure that observed brain 

asymmetry is attributed to pathological conditions rather than variations in head 

positioning or the prescribed scanning configuration. 

Therefore, it is essential to recognize the head position and ensure proper 

alignment during the MRI scan. Establishing the correct location and orientation of an 

MRI slice for a whole-brain MRI scan is particularly important. This ensures that the 

acquired slices cover the entire brain region of interest and are aligned in a 

standardized manner. 

By acknowledging the importance of MRI orientation and ensuring proper 

alignment, clinical practitioners can improve the accuracy and reliability of their 

interpretations. This understanding contributes to effectively utilizing MRI images for 

diagnostic and research purposes. 

2.3 MRI Localizer Scan (Scout Scan) 

An MRI Scout Scan, also known as a localizer or survey scan, is an initial imaging 

sequence performed before the actual MRI examination. Its purpose is to provide an 

overview or scout image of the patient's anatomy, helping to guide the subsequent 

acquisition of specific imaging planes or sequences. 

During the MRI Scout Scan, the radiographer or technician acquires images in 

different orientations (sagittal, coronal, and axial) to visualize the anatomical 

landmarks and determine the patient's positioning within the MRI scanner. These 

localizer slices are in low resolution. Amongst the anatomical landmarks, Anterior 

Commissure (A.C.), Posterior Commissure (P.C.), (Figure 2.2) and Mid-sagittal Plane 

(MSP) (Figure 2.3) are the most significant. These images serve as reference images for 

accurately planning and positioning the subsequent MRI sequences. 



8 

 

 
Figure 2.2 A.C. and P.C. Landmarks 

 
Figure 2.3 The MSP represented as the vertical dashed-yellow axis 

The Scout Scan allows the radiographer to identify essential structures, such as 

the brain, spinal cord, or specific regions of interest. It ensures that the subsequent 

imaging planes are adequately aligned. By visually inspecting the Scout Scan images, 

the radiographer can verify the coverage of the desired anatomy and make any 

necessary adjustments before proceeding with the actual diagnostic MRI sequences. 

The Scout Scan also aids in reducing the chances of missing relevant anatomical 

regions and helps to minimize imaging artifacts that could interfere with the 

interpretation of the diagnostic images. It provides essential information for 
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optimizing the image acquisition process and improving the overall quality of the MRI 

examination. 

2.4 K-Space 

In MRI, k-space represents the spatial frequency content of the MR image. It can be 

visualized as a rectangular grid with principal axes kx and ky, which correspond to 

spatial frequencies in the x and y directions, respectively. The arrangement of cells in 

k-space reflects the distribution of different spatial frequencies within the MR image. 

In k-space, higher frequencies are located toward the outer edges of the grid, 

while lower frequencies are closer to the center. This means that the cells near the 

center of the k-space represent the low-frequency components of the image, which 

contribute to the overall structural information. The cells farther from the center 

represent higher-frequency components, contributing to finer details and sharper 

features in the image. 

The relationship between the MR image and k-space is based on the Fourier 

Transform. The Fourier Transform mathematically converts an image from the spatial 

domain to the frequency domain. In the context of MRI, the MR image is gained by 

applying the inverse Fourier Transform to the data in k-space. This conversion 

reconstructs the image by assigning appropriate intensities to the corresponding 

spatial locations. 

By performing the inverse Fourier Transform on the k-space data, the spatial 

frequencies are transformed back into the spatial domain, resulting in the MR image 

as we perceive it. This process assigns intensity values to each pixel, creating a 

representation of the anatomical structures and features present in the original image. 

 

2.5 Chapter Summary 

This chapter thoroughly comprehends the fundamental principles underlying MRI 

scan acquisition. It begins by explaining the basic principle of MRI, which relies on the 

magnetic properties of hydrogen nuclei in the presence of a strong magnetic field and 

how it is aligned in the presence of radio waves. Additionally, it discusses the concept 

of k-space, a mathematical representation of acquired data, and the application of the 

Fourier transform to convert this data into visual representations. The chapter further 

explores the components of an MRI machine, including the main magnet, gradient 

coils, radio frequency transmitter/receiver coils, and the computer system, 

highlighting their roles in the imaging process. Finally, it delves into the importance 

of MRI orientation, the significance of MRI localizer scans, and the utilization of k-

space in image reconstruction.  
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CHAPTER 3  

Related Work 

This chapter showcases the relevant literature and studies on A.C. and P.C. localization 

in neuroimaging. It explores previous research works, methodologies, and 

advancements in the field. It critically evaluates the strengths and weaknesses of 

existing approaches and identifies research gaps that the current study aims to 

address. 

3.1 Detection in the 2D Slices 

Recently, Xulei Yang et al. proposed a method for automatically detecting anatomical 

landmarks in brain M.R. scans. The method uses a multi-task deep neural network 

(Figure 3.3) trained to detect the anterior commissure (A.C.), posterior commissure 

(P.C.), and symmetry lines in the sagittal and axial images simultaneously. The multi-

task learning architecture improves learning efficiency and prediction efficiency by 

exploiting the similarities and differences across the tasks (Figure 3.1 and Figure 3.2). 

Following the derivation of the A.C. – P.C. line and symmetry line on the sagittal and 

axial images, the corresponding scan coverage is estimated using an image processing 

technique. The main disadvantage of this work is that the radiologist may not be able 

to procure a proper mid-sagittal slice while performing the MRI localizing sequence 

due to improper head position. As a result, the A.C. and P.C. landmark positions in 

that 2D slice and their positions in 3D space may not be perfect[1]. 

 

 

Figure 3.1 Point Detection Model 
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Figure 3.2 Angle Detection Model 

 

 

Figure 3.3 Multi-task Model 

 

Hiroyuki Sugimori and Masashi Kawakami's work proposes a method for 

automatically detecting a standard line in brain magnetic resonance imaging (MRI) 

scans. The proposed methodology utilizes an advanced deep learning algorithm 

known as Faster R-CNN (Region-based Convolutional Neural Network) to identify 

the orbitomeatal line (OM-line), a commonly used reference line for aligning brain MRI 

scans. The effectiveness of this approach was evaluated on a comprehensive dataset 

comprising 1200 brain MRI scans, and the results demonstrated a satisfactory level of 

accuracy in OM-line detection[19].  
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3.2 Detection in the 3D MRI Volume 

In the work of Yuan Liu and Benoit Dawant, they have proposed a learning-based 

method for automatic and efficient detection of A.C., P.C., and MSP using regression 

forest. They used random forest models to understand the nonlinear relation between 

the attributes taken from a point in an image and the likelihood or probability that the 

point is a landmark. Three-stage coarse-to-fine models are trained individually for the 

A.C., P.C., and MSP using downsampled by 4, downsampled by 2, and the original 

pictures. Localization is performed hierarchically, beginning with a preliminary 

estimate and gradually refining it[15]. 

Recently, Christine A. Edwards et al. proposes a deep learning-based method 

for automatically localizing the anterior commissure (A.C.) and posterior commissure 

(P.C.) in magnetic resonance imaging (MRI) scans. The proposed method, 

DeepNavNet, is a convolutional neural network that is trained to regress the 3D 

coordinates of the A.C. and P.C. from MRI scans. DeepNavNet was trained on a 

dataset of 1128 publicly available MRI scans and was evaluated on a test dataset of 311 

MRI scans[20]. 

3.3 Other Methodologies 

In the work of B. A. Ardekani and A. H. Bachman, they have presented an automatic 

model-based approach to detect A.C. and P.C. on the brain's MRI scan. In the study, 

they have initially located these landmarks manually with the help of experts, which 

were then used to detect A.C. and P.C. landmarks on the test scan. The authors have 

claimed this method to be robust against different contrasts and scanning modes, and 

it is also optimized against different populations. The algorithm used does not rely on 

the localization of the Corpus Callosum, which is sometimes challenging to locate[29]. 

Instead, they proceeded to localize A.C. and P.C. after successfully obtaining the 

prominent landmark Mid-brain Pons Junction (MPJ) as found from the training 

dataset. The average Euclidean distance between automatically and manually detected 

landmarks was found to be 1.1 mm, indicating high accuracy[12]. 

 

In the study by Anbazhagan et al., they used non-rigid based registration, adaptive 

basis algorithm (ABA)[30] to be specific to transform the landmark points from the 

atlas to the subject space to automate the localization of A.C., P.C., and Mid-sagittal 

plane. The estimated location of these landmarks is further optimized to achieve a 

more refined position. This algorithm is evaluated on simulated and real data and has 

produced promising results. The proposed method offers a time-efficient and 

reproducible approach to the critical first step of spatial normalization in brain 

structure[14]. 
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3.4 Chapter Summary 

This chapter provides a comprehensive literature survey on detecting anatomical 

landmarks in brain MRI scans. The survey begins with the work of Xulei Yang et al., 

who proposed a multi-task deep neural network to simultaneously detect landmarks 

such as the A.C., P.C., and symmetry lines. This approach improves learning and 

prediction efficiency by exploiting the similarities and differences across tasks[1]. 

Another Hiroyuki Sugimori and Masashi Kawakami study proposes the use of a faster 

region-based convolutional neural network (Faster R-CNN) to detect the orbitomeatal 

line (OM-line), a standard line for aligning brain MRI scans[19]. Yuan Liu and Benoit 

Dawant's work focuses on detecting A.C., P.C., and the mid-sagittal plane (MSP) using 

regression forest models and a hierarchical localization approach[15]. Further, 

Christine A. Edwards et al. introduce DeepNavNet[20]. This deep learning-based 

method regresses the 3D coordinates of the A.C. and P.C. Further, we have seen non 

deep learning-based approaches, like in the work of B. A. Ardekani and A. H. 

Bachman, presented an automatic model-based approach to detect A.C. and P.C. 

landmarks on brain MRI scans. Their method, which does not rely on Corpus 

Callosum localization, achieved a high accuracy of 1.1 mm in landmark detection[12]. 

In another study, Anbazhagan et al. used non-rigid registration with the adaptive basis 

algorithm (ABA)[30] to automate the localization of A.C., P.C., and the Mid-sagittal 

plane. Their approach showed promising results on simulated and real data, offering 

a time-efficient and reproducible method for spatial normalization in brain 

structure[14]. This chapter provides an overview of the existing methods and 

techniques employed for automatic landmark detection in 2D slices and 3D MRI 

volumes, laying the foundation for the methodology and implementation discussed in 

later chapters. 
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CHAPTER 4  

Methodology  

This chapter details the methodology for A.C. and P.C. localization and Orientation 

vector prediction. It explains the approach step-by-step, including network 

architecture and its hyperparameter details, the dataset used, data preprocessing 

techniques, loss function used, and the specific algorithms or models employed. The 

rationale behind the selected methodology is thoroughly discussed 

4.1 Network Architecture 

The deep convolutional neural network (CNN) is a robust and widely used 

architecture in image data analysis, including classification, regression, and 

segmentation tasks[31]. In this, we have designed a custom CNN model consisting of 

three parallel convolution branches, as depicted in Figure 4.1. The CNN model was 

developed to predict A.C. and P.C. coordinates and orientation vectors in brain MRI 

images. 

To train the model, we used the linear activation function as the output layer 

for predicting the A.C. and P.C. coordinates, while the sigmoid activation function was 

employed for angle prediction. The hidden layers of the CNN model utilized the 

rectified linear unit (ReLU) activation function, which helps introduce non-linearity 

and capture complex patterns in the data. The detailed specification of the architecture 

can be seen in the Table 4.1 

We have adopted a homogeneous ensemble approach to enhance prediction 

accuracy and generalization performance. This approach involved training five similar 

models independently. Five models dedicated to A.C. landmark prediction, another 

set of five models for P.C. landmark prediction, and an additional five models for angle 

estimation were individually trained, and output from those five models was 

subsequently averaged to obtain the final prediction for each respective landmark 

category, as illustrated in Figure 4.2. 

Each model underwent 40 epochs during the training process, with the "Adam" 

optimizer being utilized. The optimizer is crucial in updating the model's parameters 

during training to minimize the prediction error. "Adam" is a popular optimization 

algorithm commonly used in deep learning models due to its effectiveness in handling 

large-scale datasets and complex architectures. By training the models for multiple 

epochs, the network had the opportunity to learn intricate patterns and relationships 

within the data, gradually improving its performance over time. 

The ensemble learning approach employed by us provides several benefits. 

First, it helped mitigate the risk of overfitting, a common challenge in deep learning 
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models, where the model becomes overly specialized to the training data and performs 

poorly on unseen examples. By training multiple models independently and 

combining their predictions, the ensemble model was able to reduce the impact of 

individual model biases and errors, leading to an improved generalization of unseen 

data.[32], [33]. 

 

Figure 4.1 Custom CNN architecture  
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Table 4.1 Architecture Details 

 

Layer Depth Filter/Pooling Output Size Parameters Input 

input1 1 
 

256 x 256 x 1 0 
 

input2 1 
 

256 x 256 x 1 0 
 

input3 1 
 

256 x 256 x 1 0 
 

conv2d 16 3 x 3 256 x 256 x 16 160 input1 

conv2d_1 16 3 x 3 256 x 256 x 16 160 input2 

conv2d_2 16 3 x 3 256 x 256 x 16 160 input3 

average_pooling2d 
 

2 x 2 128 x 128 x 16 0 conv2d 

average_pooling2d_1 
 

2 x 2 128 x 128 x 16 0 conv2d_1 

average_pooling2d_2 
 

2 x 2 128 x 128 x 16 0 conv2d_2 

concatenate 
  

256 x 256 x 48 0 conv2d, conv2d_1, 

conv2d_2 

conv2d_4 32 3 x 3 128 x 128 x 32 4640 average_pooling2d 

conv2d_5 32 3 x 3 128 x 128 x 32 4640 average_pooling2d_1 

conv2d_6 32 3 x 3 128 x 128 x 32 4640 average_pooling2d_2 

conv2d_3 32 1 x 1 256 x 256 x 32 1568 concatenate 

concatenate_1 
  

128 x 128 x 96 0 conv2d_4, conv2d_5, 

conv2d_6 

average_pooling2d_3 
 

2 x 2 128 x 128 x 32 0 conv2d_3 

average_pooling2d_4 
 

2 x 2 64 x 64 x 32 0 conv2d_4 

average_pooling2d_5 
 

2 x 2 64 x 64 x 32 0 conv2d_5 

average_pooling2d_6 
 

2 x 2 64 x 64 x 32 0 conv2d_6 

concatenate_2 
  

128 x 128 x 

128 

0 concatenate_1, 

average_pooling2d_3 

conv2d_8 64 3 x 3 64 x 64 x 64 18496 average_pooling2d_4 

conv2d_9 64 3 x 3 64 x 64 x 64 18496 average_pooling2d_5 

conv2d_10 64 3 x 3 64 x 64 x 64 18496 average_pooling2d_6 

conv2d_7 64 1 x 1 128 x 128 x 64 8256 concatenate_2 

concatenate_3 
  

64 x 64 x 192 0 conv2d_8, conv2d_9, 

conv2d_10 

average_pooling2d_7 
 

2 x 2 64 x 64 x 64 0 conv2d_7 

concatenate_4 
  

64 x 64 x 256 0 concatenate_3, 

average_pooling2d_7 

conv2d_11 128 1 x 1 64 x 64 x 128 32896 concatenate_4 

average_pooling2d_11 
 

2 x 2 32 x 32 x 128 0 conv2d_11 

conv2d_12 128 3 x 3 32 x 32 x 128 147584 average_pooling2d_11 

average_pooling2d_12 
 

2 x 2 16 x 16 x 128 0 conv2d_12 

flatten 
  

32768 0 average_pooling2d_12 

dense 
  

1024 33555456 flatten 

dense_1 
  

128 131200 dense 

dense_2(output) 
  

3 387 dense_1 
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Figure 4.2 Homogeneous Ensemble Model 

Three brain MRI localizer slices from the sagittal, coronal, and axial planes were 

fed into the CNN model for input. These slices provided spatial information for the 

model to learn and make accurate predictions. The model's output was the 3D 

coordinates of the A.C. or P.C. landmarks in the brain MRI volume, depending on the 

task, as well as the orientation vector. 

It's important to note that separate models were developed for A.C. and P.C. 

coordinate prediction and orientation detection, indicating that the network was 

specialized for each task. This approach allows for better modeling and prediction of 

the specific anatomical landmarks and angles of interest in the brain MRI data. 

4.2 Dataset 

In the assessment, a total of six publicly available MRI datasets were utilized (refer to 

Table 4.2 for details). These datasets were selected based on their relevance to the 

research objectives and their availability for academic use. The inclusion of multiple 

datasets allowed for a comprehensive evaluation of the proposed methods and 

increased the generalizability of the findings. By utilizing these six publicly available 

MRI datasets and carefully excluding scans with poor data quality, we proceeded with 

the subsequent stages of data preprocessing, analysis, and interpretation. 
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Table 4.2 Dataset Details 

Dataset 
No. of MRI Scan 

used 
Demography Reference 

DS1 35 (36) 
Mean Age 20.12, 

SD : 1.73; 18 females  
[34] 

DS2 34 (34) Age: 19 - 35 [35] 

DS3 34 (35) Age:19-31; 21 females [36] 

DS4 30 (36) Age:18-32, 24 females [37] 

DS5 50 (52) 
Age:18-42yrs; 30 

females 
[38] 

DS6 48 (49) Age:19-29; 24 females [39] 

 

4.3 Data Pre-processing 

In this study, we utilized MRI volumes as the primary data source. Each MRI volume 

was initially resized to 256x256x256 pixels with an isotropic resolution of 1mm. To 

enhance the diversity and variability of the dataset, two separate datasets were 

generated through the application of random affine transformations. 

The first dataset was obtained by applying ten random affine transformations 

with 9 DOF (Degrees of Freedom), including translation, rotation, and scaling. The 

translations were randomly generated within a range of -20mm to +20mm, rotations 

ranged from -30° to +30°, and a scaling factor of 0.1mm was applied. Consequently, 

ten MRI brain volumes were generated from a single brain volume, each representing 

a different transformation. 

Further, three-plane MRI localizer slices were extracted from each transformed 

volume. These slices were obtained by slicing the 3D MRI volume at its center in each 

of the three axes: sagittal, coronal, and axial planes. As a result, three 2D MRI slices 

representing the different planes were obtained for each transformed volume. The 

entire process described above is visually illustrated in Figure 4.3 

Similarly, a second dataset was generated using different affine 

transformations. In this case, the translations ranged from -5mm to +5mm, rotations 

ranged from -15° to +15°, and the scaling factor remained the same at 0.1mm. 

By generating these datasets from affine transformation, we aimed to simulate 

and account for head position and orientation variations commonly encountered in 

real-world MRI scans. This approach allowed us to train models capable of accurately 



19 

 

predicting the A.C. and P.C. coordinates and the orientation vector, even in the 

presence of head location inaccuracies 

 

Figure 4.3 Pre-processing of Dataset 

 

4.4 Loss Function 

We have used Mean Square Error (MSE) as the loss function for our convolution neural 

network model. The equation for mean square error is as follows. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 −  𝑦̂)2

𝑁

𝑖=1

 

Here, “N” represents the total number of test samples used for evaluation. Each 

sample is denoted by the subscript “i”. The term "𝑦𝑖" corresponds to the ground truth 

value for the i-th sample, while “𝑦̂” represents the predicted output from our CNN 

model for the same sample. 

4.5 Chapter Summary 

This chapter discusses the methodology for localizing the A.C. and P.C. landmarks, as 

well as predicting the orientation vector, in brain MRI scans is presented. The approach 

involves the development of a custom CNN architecture with three parallel 

convolution branches, allowing for accurate prediction of A.C. and P.C. coordinates 

and orientation angles. A homogeneous ensemble model is employed to improve 

prediction accuracy and generalization, training five similar models independently 
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and averaging their outputs. The dataset used consists of publicly available MRI 

datasets, carefully selected to ensure data quality. Data preprocessing techniques 

include: 

• Resizing the MRI volumes. 

• Applying random affine transformations to simulate head position variations. 

• Extracting three-plane MRI localizer slices. 

The mean square error is used as the loss function for training the CNN models. 

Overall, this comprehensive methodology provides a robust framework for effectively 

localizing landmarks and predicting orientations in brain MRI scans. 
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CHAPTER 5  

Experiment and Results 

The chapter focuses on the practical aspects of implementing the proposed 

methodology. It describes the experimental setup, model training, testing workflow, 

evaluation metrics, and the results/outcomes. The results of the experiments, including 

quantitative performance measures and qualitative analyses, are presented and 

discussed. 

5.1 Training 

In our thesis, we adopted a two-stage approach consisting of coarser to finer 

models. This approach allowed us to progressively refine the accuracy and precision 

of our predictions. To implement this approach, we trained models on two distinct 

datasets generated as described in Section 4.2. Further, we have introduced multiple 

models, which include training and testing our dataset in full resolution, 25%, 5%, and 

1% lower-sampled images, each with an ensemble approach, as discussed in Section 

4.1. 

The first stage involves the training of the coarser model. This model is trained 

on the dataset with ±20mm translation, ±30° rotations, and a scaling factor of 0.1. This 

allows us to predict the first set of results through which we can adjust and align the 

patient's head orientation to achieve better and finer results. 

The second stage involves training a finer model, which is trained on the dataset 

with ±5mm translation, ±15° rotations, and a scaling factor of 0.1. With this model, we 

predict the final results for our input image. The detailed workflow for predicting the 

final image is further explained in the Section 5.3. 

We have also performed both within-dataset and cross-dataset evaluations for 

our model. During the training, 20 MRI scans were randomly selected, each from DS1, 

DS2, and DS3, and the remaining MRI scans were used for the within-dataset testing. 

The model was evaluated using MRI scans from DS4, DS5, and DS6 for cross-dataset 

validation. The Euclidian distance between anatomical landmarks’ actual and 

predicted locations in 3D space was utilized as an error measure. 
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5.1.1 Low Pass Filtering 
In order to obtain the lower-sampled image of the dataset, we employed low-pass 

filtering in the frequency domain technique. Firstly, we transformed the original 

dataset into the frequency domain using the Fourier transformation. This 

transformation allows us to analyze the image in terms of its frequency components. 

Next, we applied a low-pass filtering technique to achieve the desired lower-

sampled images. This involved creating a mask that defined the frequency range to be 

preserved while attenuating higher frequencies. The mask was then multiplied with 

the frequency domain image, effectively reducing the high-frequency details and 

retaining the lower-frequency components. 

Finally, we converted the filtered image back to the spatial domain using the 

Inverse Fourier transformation. This process restored the image from the frequency 

domain to its original spatial representation but with a reduced level of detail due to 

the low-pass filtering. 

Applying low-pass filtering means eliminating the high-frequency components 

from the MRI image in the K-space. The resulting effect is that the Field of View(FOV) 

of the MRI image remains the same, but the pixel width is increased. Larger the pixel 

size/width, the lower the in-plane spatial resolution. Hence, to obtain low-resolution 

images, we have applied low-pass filtering. We have introduced low-pass filtering to 

mimic the low-resolution MRI images from the MRI scan machine. Further, we can 

verify whether we can accurately predict A.C., P.C., and orientation vectors in these 

low-resolution images. Obtaining low-resolution images from the MRI scan machine 

significantly reduces the MRI acquisition time, reducing overall workflow time. 

The Figure 5.1 visually presents the complete process, depicting the conversion 

from the spatial domain to the frequency domain, the utilization of a low-pass filter, 

and the subsequent inverse transformation back to the spatial domain. 

 

 
Figure 5.1 Low Pass Filtering using Fourier transformation 

 

The impact of various levels of low-pass filtering can be observed in the 

accompanying Figure 5.2 - Figure 5.5. Notably, discernible changes can be observed in 

the images as the filtering intensity increases. The loss of intricate details is attributed 

to the attenuation of high-frequency components responsible for details, sharpness, 
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and edge information within the images. As a result, the filtered images exhibit a 

progressively smoother appearance with diminishing fine information as the level of 

filtering intensifies. The visual representation of these outcomes effectively 

demonstrates the effects of Fourier low-pass filtering on the images under 

consideration. 

 
Figure 5.2 Original Image 

 
Figure 5.3  25% Low-filtered Image 
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Figure 5.4  5% Low-filtered Image 

 
Figure 5.5  1% Low-filtered Image 

 

5.2 Unit Testing 

We have done the unit testing of both models. For models trained with ±20mm 

translation and ±30°rotation, the mean A.C. and P.C. landmark localization error is less 

than 3 millimeters, and the mean error for predicting angle is around 3°for within-

dataset across all the models. For cross-dataset, the mean A.C. and P.C. landmark 

localization error is found to be less than 4 millimeters, and the mean error for 

predicting angle is around 4° across all the models. (Table 5.1.)  

For models trained with ±5mm translation and ±15°rotation, the mean A.C. and 

P.C. landmark localization error is less than 1.5 millimeters, and the mean error for 

predicting angle is around 1.4°for within-dataset across all the models For cross-

dataset, the mean A.C. and P.C. landmark localization error is found to be less than 2 
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millimeters, and the mean error for predicting angle is around 1.8° across all the 

models.(Table 5.2) 

Table 5.1  ±20mm Translation and 30°Rotation 

 

Table 5.2  ±5mm Translation and 15°Rotation 

 
Within Dataset Cross Dataset 

A.C. P.C. Angle A.C. P.C. Angle 

Original 1.16 ± 0.20 1.44 ± 0.24 1.36 1.47 ± 0.20 1.91 ± 0.40 1.78 

25% Lower-

Sampled 
1.17 ± 0.17 1.45 ± 0.26 1.35 1.44 ± 0.23 1.96 ± 0.35 1.61 

5% Lower-

Sampled 
1.19 ± 0.20 1.42 ± 0.26 1.37 1.47 ± 0.17 1.97 ± 0.42 1.80 

1% Lower-

Sampled 
1.23 ± 0.23 1.43 ± 0.23 1.38 1.52 ± 0.18 1.94 ± 0.34 1.80 

 

  

 
Within Dataset Cross Dataset 

A.C. P.C. Angle A.C. P.C. Angle 

Original 2.64 ± 0.21 2.46 ± 0.33 3.00 3.15 ± 0.31 3.69 ± 0.98 3.88 

25% Lower-

Sampled 
2.68 ± 0.24 2.45 ± 0.27 3.14 3.19 ± 0.37 3.69 ± 1.05 4.00 

5% Lower-

Sampled 
2.67 ± 0.22 2.51 ± 0.35 3.41 3.21 ± 0.39 3.79 ± 1.12 3.98 

1% Lower-

Sampled 
2.73 ± 0.27 2.47 ± 0.29 3.62 3.37 ± 0.41 3.62 ± 1.04 4.17 



26 

 

5.3 Testing Workflow 

Firstly, we obtained three types of image planes - Sagittal, Coronal, and Axial - from 

datasets containing images with 20mm translation and 30° rotation. These images 

served as inputs to Model 1. This model has been specifically trained using the dataset 

that includes images with 20mm translation and 30° rotation. The objective is to use 

this model to predict the coordinates for the anterior commissure (A.C.), posterior 

commissure (P.C.), and orientation vector.  

Once the predictions for A.C., P.C., and the orientation vector have been 

obtained, the next step involves calculating the transformation matrices. These 

matrices enable the application of an affine transformation to the 3D image volume, 

simulating the necessary correction. Hence, this affine transformation mimics the 

correction required to align the images accurately. 

Following the transformation, three-plane MRI localizer slices are extracted. 

This is achieved by slicing the 3D MRI volume at the center along each of the three 

axes, namely the sagittal, coronal, and axial planes. These resulting slices serve as the 

input for Model 2. Model 2, which has been trained using the dataset comprising 

images with 5mm translation and 15° rotation, is responsible for predicting the final 

output based on the provided slices. By employing this two-stage approach, the study 

aims to refine the predictions and obtain a more accurate estimation of the desired 

outputs, ultimately contributing to the overall success of the analysis. The complete 

workflow of the testing can be seen in the Figure 5.6. 

 

Figure 5.6 Testing Pipeline 
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5.4 Outcomes 

Table 5.3 Within Dataset 

  
A.C. (mean ± std) P.C. (mean ± std) Angle (mean) 

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

Original 1.88 ± 1.02 0.80 ± 0.55 1.64 ± 0.83 0.88 ± 0.45 3.27 1.35 

25% 

Lower-Sampled 1.76 ± 0.95 0.79 ± 0.45 1.62 ± 0.86 0.95 ± 0.52 2.81 1.29 

5% 

Lower-Sampled 1.74 ± 0.89 0.75 ± 0.38 1.76 ± 0.74 0.91 ± 0.47 2.79 1.29 

1% 

Lower-Sampled 1.67 ± 0.95 0.79 ± 0.48 1.61 ± 0.71 0.92 ± 0.49 2.95 0.79 

 

Table 5.3 shows that the mean error in predicting the A.C. and P.C. is less than 1mm 

with a standard deviation of less than 0.6mm, while the mean error in predicting the 

orientation vector is less than 1.4°. Hence, the result produced is as expected with 

respect to unit testing done on the individual models. 

 

Table 5.4 Cross Dataset 

  
A.C. (mean ± std) P.C. (mean ± std) Angle (mean) 

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

Original 2.20 ± 1.10 1.25 ± 0.66 2.76 ± 1.67 1.31 ± 0.72 3.24 1.59 

25% 

Lower-Sampled 
2.50 ± 1.35 1.32 ± 0.95 2.82 ± 1.82 1.41 ± 0.80 3.69 1.78 

5% 

Lower-Sampled 
2.49 ± 1.20 1.30 ± 0.88 2.96 ± 1.96 1.41 ± 0.78 4.27 1.88 

1% 

Lower-Sampled 
2.62 ± 1.31 1.39 ± 0.91 2.78 ± 1.78 1.38 ± 0.73 4.90 1.49 
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Table 5.4 shows that the mean error in predicting the A.C. and P.C. is less than 1.5mm 

with a standard deviation of less than 1mm, while the mean error in predicting the 

orientation vector is less than 2°. Hence, the result produced is as expected with respect 

to unit testing done on the individual models. 

 

5.5 Chapter Summary 

In this chapter, we have evaluated our proposed methodology to predict the A.C. and 

P.C. landmark localization and determine the orientation vector. This involves training 

coarser and finer models, which were tested individually. Finally, we have designed 

the complete testing pipeline, which incorporates the results obtained from the coarser 

model, calculating the transformation matrix in order to correct the misalignment in 

the head position and finally giving this input to the finer model to predict the final 

output. The results are promising and useable in real-world applications.    
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CHAPTER 6  

Discussion and Conclusion 

6.1 Discussion 

In this study, we have presented a methodology for predicting A.C. and P.C. landmark 

localization and determining the orientation vector in brain MRI scans. The suggested 

method entailed developing coarser and finer models that were then evaluated and 

tested separately. The results demonstrated the effectiveness of our methodology and 

its potential for real-world applications. 

The two-stage training approach, starting with the coarser model and 

progressing to the finer model, allowed for gradual refinement and improvement in 

the accuracy and precision of the predictions. This iterative process enabled us to 

adjust and align the patient's head orientation, leading to more accurate and reliable 

results. 

We also conducted extensive evaluations, including within-dataset and cross-

dataset testing, to check the generality and assess our model's performance. The 

evaluation metrics, such as landmark localization and angle prediction errors, 

provided quantitative measures of the models' performance. The results from both 

within-dataset and cross-dataset evaluations showed consistent and favorable 

outcomes, with low errors in landmark localization and angle prediction. 

We have also trained, evaluated, and tested our model with the lower sampled 

images, which is not yet been researched much. This increases the practical 

applicability of our solution in the real world as many medical facilities still use MRI 

machines, which give low-sampled images as output. Another benefit of using low-

sampled images is that it takes much less amount of time to acquire them, hence 

decreasing the overall MRI acquisition time and patient discomfort. 

The testing workflow, incorporating the predictions from the coarser model and 

applying a transformation matrix for head position correction, proved to be a robust 

and reliable approach. The finer model, trained on images with finer transformations, 

provided more accurate predictions based on the corrected inputs supplied from the 

first stage. This two-stage process contributed to the overall success of the analysis and 

improved the estimation of the desired outputs. 
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6.2 Conclusion 

In conclusion, our study has successfully predicted the A.C. and P.C. landmarks and 

Orientation vector directly from three-plane 2D MRI Localizer slices. The accuracy in 

locating these landmarks is comparable to existing methods that predict them in 3D 

voxel or 2D MRI scans in the mid-sagittal plane. Our methodology demonstrates 

impressive results, with a mean error of less than 1mm for landmark localization 

within the dataset and less than 2mm for cross-dataset evaluation. Additionally, the 

mean error in degrees for determining the orientation vector is less than 2° for both 

within and cross-dataset analyses. These findings open up possibilities for useful 

applications like image-guided neurosurgery and neuroimaging research. 

 

6.3 Future Work 

The future research includes working directly with the K-space dataset, which 

encompasses spatial frequency and phase information. This approach could decrease 

the preprocessing time and computational resources as the output from the MRI scan 

is in the K-space. 

Further, we aim to predict and localize more anatomical landmarks and planes 

in 3D space, which can aid in treating problem-specific regions, enabling a broader 

range of applications in neuroimaging research and clinical settings. 

Furthermore, we would like to investigate the latest MRI machines and 

technologies utilized since it is crucial for a comprehensive understanding of the 

technologies currently employed. For instance, exploring the Achieva 1.5T SE Circular 

Edition, Siemens MAGNETOM Skyra, and Siemens Numaris XA31 systems can 

provide insights into their specific capabilities, imaging protocols, and potential 

optimizations for our methodology. Understanding the intricacies of these MRI 

machines will help refine our approach and maximize its compatibility and 

performance within real-world clinical settings. 
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