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Abstract

Quantile regression models have gained popularity among researchers these days.
The mean regression model estimates the mean of y; given x. But in some appli-
cations, estimation of the quantiles of y; given x is not very useful. This thesis
presents a data-driven analysis and prediction of air quality in Delhi metro city
using quantile regression and deep learning models.

The main objectives are to investigate the monthly trend and correlation of
PM2.5, PM10, NO2 and SO2 concentration and temperature, to compare different
regression models such as linear, quadratic, kernel, and quantile regression to
estimate the PM2.5, PM10, NO2 and SO2 concentration using the temperature
variables, and to compare different deep learning models such as gated recurrent
units (GRUs), vanilla(LSTM), simple long short-term memory (LSTM) networks,
convolutional neural network - long short-term memory (CNN-LSTM) networks,
and support vector regression (SVR) for time series forecasting of pollution levels.
The data used in this study is the Delhi air quality data from 2015 to 2020, which
contains various pollutants and environmental factors.

The results show that quantile regression is more flexible, robust, and infor-
mative than other models, and can capture the variability and diversity of the
PM2.5, PM10, NO2 and SO2 distribution over distinct quantiles or percentiles.
The results also show that deep learning models are effective and powerful tools
for time series forecasting on pollution data. Among them, the SVR model is su-
perior to other models. The study aims to contribute to the scientific knowledge
and practical solutions for air quality prediction and analysis.

Index Terms: Quantile Regression, Quantile estimation, Regression Models, Deep

learning models
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CHAPTER 1

Introduction

1.1 Motivation

Air pollution is an immense environmental and health problem that affects mil-
lions of people worldwide. Three Indian cities, Delhi, Mumbai, and Kolkata, are
among the top ten most polluted in the world, according to the World Health
Organisation (WHO) [10]. Air pollution can have a variety of negative impacts,
including diminished lung function, asthma attacks, and premature death. As a
result, it is essential to track and regulate air pollution levels in various locations
and scenarios [13]. In this thesis, we propose to conduct detailed data-driven
research on pollution trends in Delhi metropolitan city and their relationship to
various weather conditions.

From 2015 to 2020, the Central Pollution Control Board, also known as the
CPCB, gathered air quality data in India in order to establish future pollution
control policies for Indian metro cities. Daily measurements of four primary pol-
lutants are included in the data: PM2.5, PM10, SO2, and NO2. PM2.5 and PM10
are particle sizes of less than 2.5 and 10 micrometres, respectively [17]. They can
enter the lungs and cause issues with the heart and breathing. SO2 and NO2 are
the chemical formulas for sulphur dioxide and nitrogen dioxide, respectively [21].
They are gases that can generate acid rain and irritate the eyes, nose, throat, and
lungs.

We analyse data through different statistical approaches and visualisation tools
to investigate patterns and trends in air pollution in major India metropolises [27].
We also look into the relationship between air pollution levels and environmental
conditions like temperature. We hypothesise that weather conditions have a sub-

stantial impact on air pollution levels and vary across seasons and regions [22].
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Figure 1.1: Environment and Health Risk

1.2 Overview of the (AQI) System

The Air Quality Index (AQI) [15], a numerical measurement of the level of pol-
lutants in the air, is one method for measuring air pollution. The air quality in-
dex (AQ]I) is calculated using levels of pollutants such as particulate matter (PM),
ozone (O3), nitrogen dioxide (NO2), sulphur dioxide (502), and carbon monoxide
(CO) [26]. The Air Quality Index (AQI) provides a simple and standardised way
for the public to understand the health effects of air pollution.,

The Air Quality Index (AQI) values and their respective categories, colours,
and meanings are shown in Fig. 1.2. The AQI scale runs from 0 to 500, with
higher numbers indicating greater pollution and more health concerns [12]. Green
(good), light green (moderate), yellow (unhealthy for sensitive populations), or-
ange (unhealthy), red (extremely unhealthy), and maroon (dangerous) are the
AQI categories [19]. Each category has a different impact on the general popula-
tion’s and vulnerable groups” health, such as children, elderly people, or persons

with lung or heart disease. When the AQI is in the red category, for example,



everyone may suffer from major health impacts, however when the AQI is in the

yellow category, only the sensitive groups may suffer from health effects.

AQI
{Ra“(g::'}"-‘]“? PMyg (24hr) PM_ 5 (24hr) NO; (24hr) 503 (24hr)

Moderate 101-250 81-180 81-380
(101-200)

Hazardous
(401-500)

Figure 1.2: AQI Index

1.3 Contribution

We used different methods to study the monthly trend, the effect of tempera-
ture, and the variability and diversity of PM2.5 concentration over different quan-
tiles or percentiles [18]. We found that PM2.5 concentration was higher in winter
months than summer and monsoon months, and that temperature had a positive
correlation with PM2.5 concentration.

We used various statistical techniques to analyze the data on PM2.5 concentra-
tion and temperature in Delhi city during 2015-2020 [14]. We used boxplots [20] to
show the median, quartiles, and outliers of PM2.5 concentration for each month,
and scatter plots to show the parabolic pattern of PM2.5 and temperature.



We used correlation analysis [7] to measure the strength and direction of the
linear relationship between PM2.5 and temperature, and regression analysis to
model the relationship between PM2.5 and temperature using linear, quadratic
[29], and kernel functions [6]. We used hypothesis tests, RMSE, SSE to evalu-
ate the performance of these models. We also found that traditional regression
models failed to capture the complexity of the relationship between PM2.5 and
temperature.

We used quantile regression [4] to estimate the relationship between PM2.5
and temperature on different levels of the pollution distribution, such as the 10th
or 90th percentile. We used different methods to construct confidence intervals
for the slope coefficients of quantile regression [3] [2] [1]. We calculated cover-
age probability to assess the accuracy and reliability of these confidence intervals.
We found that quantile regression had high coverage probability using different
methods, and that it could capture the variability and diversity of PM2.5 over
distinct quantiles or percentiles better than traditional regression models.

In next chapter, We compare different deep learning models for time series
forecasting on pollution data. It requires the application of advanced and novel
methods that can handle the complexity and uncertainty of the pollution data. It
also involves the exploration and analysis of the underlying patterns and factors
that affect the pollution levels.

The deep learning models that are compared in this study are gated recurrent
units (GRUs) [28], long short-term memory (LSTM) [5] networks, convolutional
neural network - long short-term memory [30] networks, and support vector re-
gression (SVR) [9]. These models are chosen because they can capture the complex
and nonlinear patterns in the pollution data, and handle variable-length input se-
quences and produce accurate and robust forecasts. The data used in this study
is the Delhi air quality data from 2015 to 2020, which contains various pollutants
and environmental factors.

In the model evaluation step, the models are evaluated by plotting the pre-
dicted and actual values of pollution levels on the training and testing sets, and
by calculating the root mean squared error (RMSE) as a metric of accuracy. We
studied that deep learning models are effective and powerful tools for time se-
ries forecasting on pollution data. Among them, the SVR model is superior to
other models on pollution data-set. The study aims to contribute to the practical

solutions for air quality prediction.



1.4 Thesis Organization

The thesis is organized as follows:

In chapter 2 reviews the literature on quantile regression and its applications
in air pollution analysis and health outcomes.

In chapter 3 presents the experiment design, data description, statistical meth-
ods, linear regression model, qaudratric model, kernel function, quantile regres-
sion model, coverage probability analysis, and results discussion.

In chapter 4 presents the time series forecasting using deep learning models,
GRU model, Vanilla LSTM model, LSTM model, CNN-LSTM model and SVR
model description, evaluation metrics, results discussion, and comparison.

In chapter 5 concludes the thesis with a summary of the main findings, limita-

tions, and future work.



CHAPTER 2

Literature Survey

2.1 Pollution Analysis

In this thesis, we use a quantile regression model to analyze the relationship be-
tween [24] Air pollution is a major environmental and health problem that af-
fects millions of people worldwide. According to the World Health Organization
(WHO), air pollution causes about 7 million premature deaths every year, and is
linked to various diseases such as respiratory infections, cardiovascular diseases,
stroke, and lung cancer . One of the most polluted cities in the world is Delhi,
the capital of India, where the air quality often reaches hazardous levels, espe-
cially during the winter months . The main sources of air pollution in Delhi are
vehicular emissions, industrial activities, biomass burning, dust storms, and me-
teorological factors .

The objective of this thesis is to use a quantile regression model to analyze
the relationship between air pollution and its predictors, such as temperature or
particulate matter (PM2.5), on different levels of the pollution distribution. We hy-
pothesize that quantile regression can provide more comprehensive and nuanced
insights into the dynamics and drivers of air pollution than traditional regression
models.

Quantile regression is a statistical method that estimates the conditional me-
dian or other quantiles of the response variable across values of the predictor
variables. Quantile regression can capture the variability and diversity of the re-
sponse over distinct quantiles or percentiles. This can be useful for analyzing data
that has unequal variation, non-linear relationships, or extreme values (Koenker,
2017). For example, quantile regression can reveal how temperature affects high
or low levels of PM2.5 differently, or how PM2.5 affects health outcomes differ-
ently across different population groups. Quantile regression has been widely
used for air quality analysis in various studies , and has shown promising results

in terms of accuracy and robustness.



2.2 Estimating PM2.5 concentration using temperature

variables

Air pollution [16] is a major environmental and health problem that affects mil-
lions of people worldwide. According to the World Health Organization (WHO),
air pollution causes about 7 million premature deaths every year, and is linked
to various diseases such as respiratory infections, cardiovascular diseases, stroke,
and lung cancer . One of the most polluted countries in the world is India, where
the air quality often reaches hazardous levels, especially in the metro cities such
as Delhi, Mumbai, Kolkata, and Chennai . The main sources of air pollution in
India are vehicular emissions, industrial activities, biomass burning, dust storms,
and meteorological factors.

The objective of this thesis is to study the trends of different pollutant gases
present in the air of metro cities in India, and to analyze their relationship with
temperature variables using quantile regression models. We hypothesize that
quantile regression models can provide more comprehensive and nuanced in-
sights into the dynamics and drivers of air pollution than traditional regression
models.

Quantile regression is a statistical method that estimates the conditional me-
dian or other quantiles of the response variable across values of the predictor
variables. Quantile regression can capture the variability and diversity of the re-
sponse over distinct quantiles or percentiles. This can be useful for analyzing data
that has unequal variation, non-linear relationships, or extreme values (Koenker,
2017). For example, quantile regression can reveal how temperature affects high
or low levels of PM2.5 differently, or how PM2.5 affects health outcomes differ-
ently across different population groups. Quantile regression has been widely
used for air quality analysis in various studies , and has shown promising results
in terms of accuracy and robustness.

However, according to the data available in 2020, the levels of different pol-
lutant gases in the air of metro cities in India have been consistently high and
hazardous to human health . Therefore, there is a need for more detailed and
comparative studies for quantile regression models in the field of air pollution
control. In this thesis, we aim to fill this gap by thoroughly comparing different
quantile regression models, using them to estimate the PM2.5 concentration in an
urban location using the temperature variables. We also aim to provide more in-
sights into the factors that influence the extreme values of PM2.5 concentration,
such as the 10th or 90th percentile.



2.3 Comparative analysis of pollutant gas levels in metro
city

Delhi, for instance, has consistently ranked as one of the most polluted cities in
the world, with high levels of particulate matter (PM2.5), nitrogen dioxide, and
ozone. Other metro cities such as Mumbai, Kolkata, and Chennai [8] also have
high levels of air pollution. However, the levels may vary depending on the time
of the year and local sources of pollution. Several factors contribute to these dif-
ferences in air pollution levels among different metro cities in India. Some of the
factors that contribute to higher levels of air pollution in some cities compared to
others are:

Vehicular emissions: Cities with higher numbers of vehicles on the road tend
to have higher levels of air pollution. Delhi has one of the highest registered
vehicles in India, which contributes significantly to air pollution.

Industrial activities: Cities with a high concentration of industries tend to have
higher levels of air pollution. Mumbai, for instance, is a hub for industries such
as textiles, petrochemicals, and engineering, which contribute to air pollution.

Geography and climate: Cities located in geographically disadvantaged areas,
such as valleys or with specific climatic conditions and weather patterns, are more
likely to have high levels of air pollution. For example, Delhi is located in a region
with relatively low wind speeds, making it difficult for pollutants to disperse.

Construction and demolition: Rapid urbanization and construction activities
can lead to high levels of dust and other particulate matter, which can contribute
to air pollution.

Agricultural practices: Burning of crop stubble and other agricultural waste
can contribute significantly to air pollution levels in some areas of the country.

Overall, multiple factors contribute to the differences in air pollution levels
among different metro cities in India, and addressing these factors is crucial to

reducing air pollution and improving air quality in these cities.

2.4 Seasonal Trends of air pollution in india: causes

and consequences

There are certain times of the year when pollutant levels are higher in metro cities
in India, and the reasons for these seasonal trends are mainly related to weather

patterns and human activities [11]. One of the most significant contributors to



seasonal changes in air pollution levels in metro cities in India is the occurrence
of weather phenomena such as temperature inversions and monsoons. During
winter months, temperature inversions often occur in northern India, where the
ground is cooler than the air above, causing pollutants to become trapped near
the surface, resulting in high levels of pollution.

These temperature inversions, combined with the use of coal for heating, burn-
ing of crop stubble, and vehicular emissions, contribute to the high levels of pollu-
tion in cities such as Delhi during winter months. During the summer months, the
temperature in India can become very high, leading to the formation of ground-
level ozone, which can cause respiratory problems. Additionally, the dry and hot
weather conditions can lead to an increase in wildfires, which can significantly
contribute to air pollution levels in nearby cities.

The monsoon season in India, which generally occurs between June and Septem-
ber, can help to alleviate air pollution levels in some metro cities by washing away
pollutants from the atmosphere. However, the onset of the monsoon season can
also lead to an increase in humidity levels, which can cause an increase in mould
and dust mites, leading to respiratory problems. Human activities, such as festi-
vals and agricultural practices, can also contribute to seasonal trends in air pollu-
tion levels. For example, during the festival of Diwali, the burning of firecrackers
can lead to a significant increase in particulate matter in the air.

The burning of crop stubble in northern India after the harvest season can also
lead to a significant increase in air pollution levels during the winter months. In
summary, seasonal trends in air pollution levels in metro cities in India are mainly
driven by weather patterns and human activities, and addressing these factors is

crucial to reducing air pollution levels and improving air quality in these cities.

2.5 Air pollution levels and compliance with interna-

tional norms

Pollutant levels in metro cities in India are often higher than international stan-
dards and guidelines set by organizations such as the World Health Organization
(WHO) [25] and the United States Environmental Protection Agency (EPA). For
example, the WHO recommends that the annual average concentration of PM2.5
not exceed 10 micro grams per meter cube , while the Indian national ambient air
quality standard (NAAQS) sets a limit of 40 micro gram per meter cube. In Delhi,
for instance, the average annual concentration of PM2.5 is around 100 micro gram

per meter cube, which is ten times higher than the WHO guideline and two and

9



a half times higher than the Indian NAAQS limit. Other pollutants, such as nitro-
gen dioxide and ozone, also often exceed recommended limits in metro cities in
India.

The implications of these differences between actual pollutant levels and rec-
ommended standards and guidelines are severe. Exposure to high levels of air
pollution can lead to a wide range of health problems, including respiratory and
cardiovascular diseases, lung cancer, and stroke. It is estimated that air pollu-
tion is responsible for millions of premature deaths each year worldwide, with
a significant proportion of these occurring in India. Additionally, high levels of
air pollution can have significant economic costs, including lost productivity due
to illness, increased healthcare costs, and damage to crops and other natural re-
sources.

In terms of analysis, you may want to use statistical techniques to identify
trends and patterns in the data, as well as to explore relationships between pol-
lutant levels and other factors (such as weather patterns, population density, or
industrial activity). You may also want to consider using visualization techniques
to communicate your findings to a wider audience. Overall, this is an important
and complex area of research, but one that has the potential to have a significant
impact on public health and environmental policy in India.

Overall, the period from 2015 to 2020 saw a continued struggle to address air
pollution in India, with various measures being taken at different levels to reduce
emissions and improve air quality. The study finds that particulate pollution is the
dominant pollutant in India, with virtually all sites in northern India exceeding
the annual average national ambient air quality standards (NAAQS) for PM10
and PM2.5. Southern India also experiences high levels of particulate pollution,
exceeding the PM10 standard by 50 percent and the PM2.5 standard by 40

However, SO2, NO2, and O3 generally meet the residential NAAQS across
India. The study also finds no significant trend of these pollutants over the five-
year period, and the reanalyzed dataset can be useful for evaluating Indian air
quality from satellite data, atmospheric models, and low-cost sensors. Overall,
this dataset provides a baseline to evaluate the effectiveness of the National Clean
Air Programme and future air pollution mitigation policies in India

Investigate the interaction between air pollution and physical activity (PA) on
lung function in healthy adults living in high-polluted areas. The study moni-
tored the fine particulate matter (PM2.5), particulate matter less than 10 micro me-
ter (PM10), particulate matter less than 1 micro meter (PM1), black carbon (BC),
nitrogen dioxide (NO2), and ozone (O3) continuously during the 2-h exposure.

10



Lung function was measured at five time points for each visit.

The results showed that PA, compared to rest, alleviated the detrimental effects
of air pollutants on lung function. The study highlighted the importance of timing
of measurements for capturing associations and suggested that PA might alleviate
the associations between various pollutant exposures and lung function. Further

research in this area is recommended.

2.6 A Comparative Study and Application

Several studies have used quantile regression to investigate the potential vary-
ing effects of air pollution exposure on different health outcomes, such as birth
weight, carotid intima-media thickness (CIMT), and mortality [23]. For example,
Lamichhane et al. (2020) used quantile regression to examine the socioeconomic
inequalities in air pollution and birth weight and found that low maternal edu-
cation positively modified the association between PM2.5 exposure and low birth
weight 1. Wang et al. (2021) used quantile regression to examine the association
of air pollution with CIMT, a marker of atherosclerosis, and found that PM2.5
exposure had a stronger effect on CIMT at higher percentiles 2. Pérez Vasseur
and Aznarte (2021) compared 10 state-of-the-art quantile regression models for
probabilistic forecasting of NO2 pollution levels and found that quantile gradient
boosted trees showed the best performance 3.

However, there is a lack of comparative studies for quantile regression models
in the field of air pollution control. In this thesis, we aim to fill this gap by thor-
oughly comparing different quantile regression models, using them to estimate
the PM2.5 concentration in a urban location using the temperature variables. We
also aim to provide more insights into the factors that influence the extreme val-
ues of PM2.5 concentration, such as the 10th or 90th percentile, which are more

relevant for public health and environmental regulation.

11



CHAPTER 3
A statistically study of polluted gases in delhi
city:

To study the pollutant gasses present in the air of delhi city, the air quality data in
India during 2015-2020 is collected by the Central Pollution Control Board (CPCB)
and State Pollution Control Boards (SPCBs) through a network of air quality mon-
itoring stations located in various cities and towns across India. We have down-
loaded the dataset from Kaggle website which contains the daily recordings of
various pollutants such as particulate matter (PM10 and PM2.5), nitrogen oxides
(NO2), sulfur dioxide (SO2) present in the air of delhi city.Further, we have also
collected data for daily temperature and humidity present in the air of Delhi city.

A limitation of AQI values is that they only summarise the average air quality
over time. They do not reflect the variability and diversity of air pollution levels
over different quantiles or percentiles of the distribution. This means they may
miss important information about factors influencing extreme air pollution val-
ues, such as the 10th or 90th percentile. These extreme values are more relevant
for public health and environmental regulation, as they indicate the potential risks
and impacts of air pollution on the most vulnerable or exposed groups. Therefore,
there is a need for a more comprehensive and excellent analysis of air pollution

levels that can capture the variability and diversity of the distribution.

3.1 Analysis of polluted gases

we present our analysis of pollutant gases for the Delhi city using the collected
datasets. We focus on the PM2.5 concentration in air, which is one of the most
harmful pollutants for human health. We explore the monthly trend of PM2.5
concentration in air during 2015-2020 and examine the effect of temperature on

PM2.5 concentration.

12
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Figure 3.1: Monthly box plot of PM2.5 concentration

Months Jan Feb  march April May June July Aug  Sep Oct Nov Dec
Var(PM2.5) 4856.55 2800.22 999.95 132436 1607.49 1047.36 346.20 212.02 514.27 4753.54 13203.62 4814.29
Var(Temp) 2996 3324 5550 3440 3044 3348 2487 1239 1910 12.68 19.26 43.22

Min Value 60 50 25 25 25 28 20 20 20 50 50 90
Max Value 380 230 180 190 185 140 100 90 120 240 410 390
10 Value 90 45 35 45 40 25 15 15 30 70 100 90

Median 190 140 80 85 80 60 50 50 55 150 220 215

Table 3.1: Monthly Var, Min, Max, IO and Median Values 2015-2020

To study the monthly trend of PM2.5 concentration in air, we obtain the monthly
boxplot of PM2.5 concentration in air during 2015-2020, as shown in Fig. 3.1. The
boxplot shows the median, quartiles, and outliers of PM2.5 concentration for each
month. We can observe that the PM2.5 concentration varies significantly across
different months, with higher values in winter and lower values in summer and
monsoon.

In the months of November, December and January, the median value of PM
2.5 concentration is higher than 190 AQI . Also in these months, the maximum
value of PM2.5 AQI touches 420. According to the National Air Quality Index
(QAI) measures, Delhi air during the months of November, December and Jan-
uary can be ranked extremely hazardous and may have a very adversarial health
impact on the people . The range and interquartile distances for November, De-

cember and January are also large, indicating a high variability and diversity of

13



cor Jan Feb march April May June July Aug Sep Oct Nov Dec
value 0.354 0.103 0.041 0.050 0.035 0.041 0.036 0.030 0.063 0.280 0.392 0.329

Table 3.2: Correlation between PM2.5 and Temperature

PM2.5 concentration in these months.

After February, the PM2.5 concentration starts decreasing from March and be-
comes moderate in April, May, June, July, August and September. The median
value of PM2.5 concentration in these months is below 100 AQI , which is still un-
healthy but less severe than winter months. The maximum value of PM2.5 AQI in
these months is below 300 AQI , which is still very unhealthy but not hazardous.
The range and interquartile distances for these months are also smaller than win-
ter months, indicating a lower variability and diversity of PM2.5 concentration in
these months.

We can observe that in winter months of Delhi, the PM 2.5 concentration is
higher than summer and monsoon months. This may be due to various factors,
such as lower wind speed, higher humidity, higher emissions from vehicles and
industries, and crop burning in nearby states. Taking motivation from this, we at-
tempt to study the effect of the temperature on PM 2.5 concentration in Delhi air.
For this, we first compute the correlation of temperature with PM2.5 concentra-
tion. The correlation coefficient measures the strength and direction of the linear
relationship between two variables. A positive correlation means that the vari-
ables tend to increase or decrease together, while a negative correlation means
that the variables tend to move in opposite directions. A correlation coefficient
close to 1 or -1 indicates a strong relationship, while a correlation coefficient close
to 0 indicates a weak or no relationship.

The correlation analysis shows that in table 3.2 there is a positive relationship
between temperature and PM2.5 concentration for all months, which means that
as the temperature increases, the PM2.5 concentration decreases, and vice versa.
This is in line with our observation that winter months have higher PM2.5 con-
centration than summer and monsoon months. The correlation coefficient is also
higher in absolute value for winter months than summer and monsoon months,
which means that the relationship between temperature and PM2.5 concentration
is stronger in winter months than summer and monsoon months. Based on these
results, we decide to use temperature as a predictor variable for estimating the
PM2.5 concentration using regression analysis. We expect that temperature can
explain some of the variation in PM2.5 concentration across different months and

seasons.
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3.2 Linear Regression Approach

We first applied a linear regression model analysis to our collected data, which
included PM2.5 concentration in Delhi city. We also obtained the temperature
data during 2015 to 2020 from a website. The temperature was the independent
variable and PM2.5 concentration was the dependent variable. We had total 2010

data points.

y=Po+pPi1x+e€ (3.1)

where y is the dependent variable, x is the independent variable, and By and
B1 are the coefficients.

To extend this equation to a linear regression model with multiple indepen-
dent variables, we will need to add more terms. We will use the following nota-
tion:

The coefficient of linear regression is By and 1, and € is the vector of errors.

Slope Equation:
s Y —X)(yi —7)
Intercept Equation:
Po=7—pix (3.3)

where, 11,1, ...)J, are predicted value and y1, 2, ..., y» are observed value, n is

the number of observations.

n

RMSE = \/( ) Y (Wi — vi)? (3.4)
i=1

S |-

We conducted our regression analysis with a significance level of 0.05. Our
null hypothesis was f; = 0 and our alternative hypothesis was 1 # 0. Since
we obtained a p-value less than 0.05, we rejected the null hypothesis. It means
that temperature impacts the PM2.5 concentration significantly. Our regression
analysis makes sense, but the RMSE value obtained was high, so we decided to
work on a nonlinear regression model analysis.

The RMSE for linear regression is 73.85, which means that there is a large av-
erage error between the observed and predicted values. The SSE for linear re-
gression is 10958714.52, which means that there is a lot of unexplained variation
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OLS Regression Results

Dep. Variable: R-sguared:

Model : Adj. R-squared:
Method : Least Squares F-statistic:

Date: Tue, 22 May 2823 Prob (F-statistic):
Time: :] Log-Likelihood:

No. Observations:

I Residuals:

O Model:

Covariance Type:

Intercept 293
temp -G

Omnibus: 792.742 Durbin-Watson:
Prob{0mnibus) : 8.888 Jarque-Bera (JB):
Skew: 1.7682 Prob{JB):
Kurtosis: 9.43 Cond. No.

Figure 3.2: Shows the plot obtained by linear regression carried out by us
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Figure 3.3: Linear Regression Model

in the data by the model. These results suggest that linear regression is not suit-
able for modeling the relationship between PM2.5 concentration and temperature
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variables.

3.3 Quadratic regression Approach

After that, we have used quadratic regression [29] to model the relationship be-
tween PM2.5 and Temperature variables. Quadratic regression is a type of poly-
nomial regression that fits a curve of the form y = ax? + bx + € to the data, where
a is not equal to zero. We chose this method because the scatter plot of PM2.5
and Temperature showed a clear parabolic pattern, suggesting that a linear model
would not be adequate. In this section, we derived the equation for multiple re-

gression in matrix form and Quadratic regression model is
y= ax® +bx+e (3.5)

Define the error and the sum of squared errors

e =1 — (leiz + bx; + 6) (3.6)
n
SSE= Y e2=Y n(y; —ax2 — bx; — €)2 3.7)
i=1 i=1

Define the partial derivatives and set them equal to zero

dSSE 1
= = -2 1; x2(y; —ax;2 —bx; —e) =0 (3.8)
3SSE " )
5 = —2; xi(y; —axi —bx; —€) =0 (3.9)
JdSSE 1
e —2Y (yi—ax; —bx;—€) =0 (3.10)

i=1

Solve the equations for a, b, and c using matrix algebra that can perform non-
linear regression. The solution gave us the estimates of a, b, and c that best fit the
data.

The RMSE for quadratic regression is 73.61, which means that there is still
a large average error between the observed and predicted values. The SSE for
quadratic regression is 10885632.83, which means that there is still a lot of un-
explained variation in the data by the model. We still find that the quadratic

regression model results are very high so we have used a kernel regression model
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Figure 3.4: Quadratic regression Model

which will be capable of any non linear regression. We have used a gaussian ker-
nel which is in the form the parameter sigma was tuned and opatain from RMSE

value.

3.4 Gaussian Kernel Function Approach

In this section, we will derive the equation for the Gaussian kernel function. The
Gaussian kernel function is a popular kernel function that is used in machine
learning algorithms such as support vector machines and Gaussian process re-
gression.

The Gaussian kernel function is defined as:

K(x,y) =exp (—M) (3.11)

202
where x and y are two data points, and ¢ is a hyperparameter that controls the
smoothness of the kernel function.
The Gaussian kernel function can be derived using the following steps:
1. We start with the equation for the Euclidean distance between two data

points:
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Y axis(PM2.5 in micrometer ug / m3)

d(x,y) =/ (x —y)? (3.12)
2. We then take the exponential of the negative Euclidean distance:
K(x,y) = exp (—d(x,y)z) (3.13)
3. Finally, we replace the Euclidean distance with a Gaussian kernel:
_ (x—y)?
K(x,y) = exp ( 572 (3.14)
700 - .
600 - . ®
500 - .« v,
400 - : e 3 _' ._ . . ’
. * . o« 3 .:." " o
. l .
300 :
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100 .
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T
100
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Figure 3.5: Kernel Function

The RMSE for kernel function is 72.94, which means that there is still a large

average error between the observed and predicted values. The SSE for kernel

function is 10688668.04, We can observe that even in the kernel regression model

our prediction involves lots of uncertainty so it is very imperative to model the

uncertainty in the relationship with temperature and pm2.5 in detail. We target to

estimate the prediction pm2.5 concert given the temp we have used kernel quan-

tile

regression model obtain the prediction interval with 80 percent.
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Regression Model =~ RMSE Value SSE Value

Linear Regression 73.85 10958714.52
Quadratic Regression 73.61 10885632.83
Kernel Function 72.94 10688668.04

Table 3.3: RMSE and SSE value on Regression models.

3.5 Quantile regression model with Pin Loss Fuunc-
tion

In this section, we use a quantile regression model based on a kernel function.
Here we apply pinball loss function which we can use for the estimation of con-
ditional quantiles. This pinball loss function can be given by

Tu ifu > 0.

Le(u) =
‘ (T — 1)uotherwise.

We apply the Quantile regression model. We evaluate the coverage probabil-
ity as an essential criterion for assessing the accuracy and reliability of confidence
intervals for quantile regression. Ideally, we want a method that produces con-
fidence intervals with high coverage probability, which means they are likely to
contain the actual value.

We find that quantile regression analysis between PM2.5 and temperature vari-
ables has high coverage probability using different methods of constructing confi-
dence intervals. This means that we can estimate the relationship between PM2.5
and temperature variables on different levels of pollution distribution with high
accuracy and reliability. We also find that quantile regression can capture the
variability and diversity of PM2.5 over distinct quantiles or percentiles, which
can provide more comprehensive and nuanced insights into the dynamics and
drivers of PM2.5 pollution than traditional regression models.

For the training, 80 per cent of the total data, and for testing, 20 per cent of
the total data set at T value 0.1 at tuning parameter s = 2L ¢1 = 22,7 = 0.1,
vl = 0.01.The coverage probability that we calculate at T = 0.1 is 0.1015

For the training and testing data set at T value 0.9 at tuning parameter s = 2°,
c1 =22, 7 =0.9, vl = 0.01.The coverage probability that we calculate at T = 0.9 is
0.9014

We perform this procedure 500 times and compute the mean of the outcomes.
We use a kernel-based quantile regression model to estimate the conditional quan-
tiles of the PM2.5 levels given the temperature. The diagram shows that 80 percent
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T (Training Data) 7=010 7=025 7=050 7=075 7=0.90
cp 0.1015 0.2573  0.5027  0.7551  0.9014

Table 3.4: Coverage Probability Result

of our data lies between two regression lines corresponding to the 10th and 90th
percentiles. The x-axis represents temperature, and the y-axis represents PM2.5
levels. For instance, at a temperature of 80 degrees Fahrenheit, the 80 percent data
interval ranges from 51 to 230 on the y-axis.
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Figure 3.6: Training data with a 0.10 T and 0.90 T value
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CHAPTER 4
Time Series Forecasting using Deep Learning
Models

To study the pollutant gasses present in the air of delhi city, the air quality data in
India during 2015-2020 is collected by the Central Pollution Control Board (CPCB)
and State Pollution Control Boards (SPCBs) through a network of air quality mon-
itoring stations located in various cities and towns across India. We have down-
loaded the dataset from Kaggle website which contains the daily recordings of
various pollutants such as particulate matter (PM10 and PM2.5), nitrogen oxides
(NO2), sulfur dioxide (SO2) present in the air of delhi city.

Pollution is a challenging and essential problem that significantly impacts hu-
man health and the environment. It requires the application of advanced and
novel methods that can handle the complexity and uncertainty of pollution data.
It also involves exploring and analysing the underlying patterns and factors that
affect pollution levels. It contributes to the scientific knowledge and practical
solutions for air quality management and policy making. It also provides oppor-
tunities for further research and improvement in this field.

Time series forecasting using a deep learning model is a novel and effective ap-
proach that can capture the complex and nonlinear patterns in the pollution data.
It requires the application of advanced and powerful deep learning models, such
as convolutional neural networks (CNNs) and recurrent neural networks (RNNSs),
that can learn from sequential and high-dimensional data. It also involves explor-
ing and analysing the impact of various factors, such as environmental factors, on
pollution levels. It contributes to the scientific knowledge and practical solutions
for air quality prediction and management.

In this chapter, we compare different deep-learning models for sequential data
processing. These models include gated recurrent units (GRUs), long short-term
memory (LSTM) networks, and convolutional neural network-long short-term
memory (CNN-LSTM) networks. GRUs and LSTMs are recurrent neural network
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(RNN) types that can capture long-term dependencies in sequential data using
different gating mechanisms. CNN-LSTMs are hybrid models that combine a
convolutional neural network (CNN) for feature extraction from pollution data
and an LSTM for sequence generation, such as captions or labels. At last, we use
time series forecasting to predict pollution levels based on historical data. One of
the methods we employ for time series forecasting is support vector regression
(SVR), a machine learning model that can learn nonlinear relationships between

the input and output variables.

41 GRU Model

Time series forecasting is the task of predicting the future values of a series based
on past observations. A GRU model [28]is a recurrent neural network with a more
straightforward structure that can learn from sequential data. A GRU model has
two gates: reset and update gates. These gates control how information flows in
and out of the hidden state. A brief description of time series forecasting using
the GRU model is as follows:

/’_..-—- ——
h t—1 II.-" \.

A J
A J
L J

\ |

Figure 4.1: GRU Model Architecture
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Reset gate

Iy = U(wxrxt + Wy, hy 1+ br) (4.1)
Update gate
z; = U(wxzxt + thht—l + bz) (4-2)
Candidate hidden state
flt = tanh(thxt + whh(rt ©) ht—l) + bh) (4.3)
Hidden state
hi=(1-2z)Oh1+2zOhy 4.4)

In this study, we aimed to forecast the pollution levels for the winter months
(October to January) from 2015 to 2020 using a recurrent neural network (RNN)
model. We chose a gated recurrent unit (GRU) as the RNN architecture, which
has been shown to perform well on time series forecasting. We used a sliding
window approach to create the input and output sequences, with a window size
of 5. We split the data into three sets: training, validation and testing. The training
set contained data from 2015 to 2018, the validation set contained data from 2019,
and the testing set contained data from 2020. We built the GRU model with 5
input units and 1 output unit, and optimized it using the Adam algorithm with
a learning rate of 0.0001. We minimized the mean squared error (MSE) as the
loss function and trained the model for 1000 epochs. We evaluated the model by
plotting the predicted and actual values of pollution levels on the training and
testing sets, and by calculating the root mean squared error (RMSE) as a metric of

accuracy.

4.2 Vanilla LSTM Model

A Vanilla LSTM model [5] is a simple type of recurrent neural network that can
learn from sequential data and remember long-term dependencies. The Vanilla
LSTM model has a single hidden layer of LSTM units and an output layer used
to make a prediction. The Vanilla LSTM model can handle variable-length input

sequences and produce accurate and robust forecasts.

Input gate
it = c(Wyixt + Wphy_1 +b;) (4.5)
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X

[

Figure 4.2: Vanilla LSTM Model Architecture

Forget gate
fr = o(Wyrxe + Wychy 1+ by) (4.6)
Output gate
0; = U(onxt + Wpohi g + bo) 4.7)
Candidate cell state
¢ = tanh(chxt + Wjch; 1+ bc) (4.8)
Hidden state
h; = o; ©® tanh(¢;) (4.9)

We used a recurrent neural network (RNN) model to forecast pollution levels
over the winter months (October to January) from 2015 to 2020. We chose a vanilla
long short-term memory (LSTM) as the RNN architecture since it is the most basic
form of LSTM and uses a hyperbolic tangent (tanh) activation function. We built
the input and output sequences using a sliding window method with a window
size of 5. We divided the data into three sets: training, validation, and testing. The
training set had data from 2015 to 2018, the validation set contained data from
2019, and the testing set contained data from 2020. We used the Adam algorithm
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with a learning rate 0.0001 to optimize the vanilla LSTM model, which included
five input units and one output unit. As the loss function, we minimized the
mean squared error (MSE) and trained the model for 1000 epochs. We evaluated
the model by graphing projected and actual pollution levels on the training and
testing sets and computed the root mean squared error (RMSE) as an accuracy

metric.

4.3 Simple LSTM Model

Time series forecasting is the task of predicting the future values of a series based
on past observations. A simple LSTM model is a recurrent neural network that
can learn from sequential data and remember long-term dependencies. The LSTM
model has a unique structure that consists of a cell state and three gates: an input
gate, an output gate, and a forget gate. The LSTM model can handle variable-

length input sequences and produce accurate and robust forecasts.

Y

‘C,

Figure 4.3: LSTM Model Architecture

Input gate
it = c(Wyixt + Wyhi_1 +b;) (4.10)
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Forget gate

f; = O'(foxt + thht,1 + bf) (4.11)
Output gate
O; = U(onxt + Wiohe 1 + bo) (4.12)
Candidate cell state
Cell state
Ci=f0O¢c_1+1:O¢ (4.14)
Hidden state
h; = o; ® tanh(¢) (4.15)

This study aimed to anticipate pollution levels for the winter months (October
to January) from 2015 to 2020 using a recurrent neural network (RNN) model. We
picked a long short-term memory (LSTM) architecture as the RNN architecture
since it has been proven to handle long-term dependencies and avoid vanishing
gradients in time series data. The input and output sequences were built using a
sliding window method with a window size of 5. We divided the data into three
groups: training, validation, and testing. The training set included data from 2015
to 2018, the validation set included data from 2019, and the testing set included
data from 2020. The LSTM model was implemented using five input units and one
output unit, and it was optimized using the Adam method with a learning rate
of 0.0001. As the loss function, we minimized the mean squared error (MSE) and
trained the model for 1000 epochs. We evaluated the model by plotting showed
and actual pollution levels on the training and testing sets and calculated the root

mean squared error (RMSE) as an accuracy metric.

4.4 CNN-LSTM Model

A CNN-LSTM hybrid model combines convolutional neural networks (CNNs)
and extended short-term memory networks (LSTMs) to process sequential data.
The CNN model extracts features from sub-sequences of the input series, while
the LSTM model captures the temporal dependencies among the features. The
CNN-LSTM model can handle long input sequences and produce accurate and

robust forecasts.
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Input

Output

Figure 4.4: LSTM Model Architecture

CNN layer
X; = CNN(x;_1)
Input gate
i = o(Wyix; + Wyhy_1 +b;)

Forget gate

f; = O'(foxt + thht,1 + bf)
Output gate

O; = U(onxt +Wpohi g + bo)
Candidate cell state

C = tanh(chxt +Wyhy 1+ bc)
Cell state
CG=f0c¢g1+i; O

Hidden state

h; = o; ® tanh(¢)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

In this study, We used a hybrid neural network model to anticipate pollution
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levels over the winter months (October to January) from 2015 to 2020. We used a
convolutional neural network (CNN) and a long short-term memory (LSTM) net-

work to capture the time series data’s spatial and temporal features. We employed



a sliding window technique to build the input and output sequences with a win-
dow size of 5. The data was divided into three categories: training, validation, and
testing. The training set included information from 2015 to 2018, the validation
set included information from 2019, and the testing set included information from
2020. We created the CNN-LSTM model with five input units and one output unit
and then optimized it with the Adam algorithm with a learning rate 0.0001. As the
loss function, we minimized the mean squared error (MSE) and trained the model
for 1000 epochs. We assessed the model by plotting showed and actual pollution
levels on the training and testing sets and computing the root mean squared error

(RMSE) as an accuracy metric.

4.5 SVR Model

We collected our time series data from the Delhi air quality data, which contained
daily measurements of four pollutants: particulate matter (PM10 and PM2.5), ni-
trogen dioxide (NO2), sulfur dioxide (SO2). The data spanned from 2015 to 2020,
covering the winter months (October to January) when the air quality was the
worst. We divided the data into two sets: training and testing. The training set
had 80 per cent of the data, and the testing set contained 20 per cent of the total
data. We normalized the data using min-max scaling to avoid numerical instabil-
ity and improve the performance of the model.

We developed a support vector regression (SVR) model [9] to forecast the pol-
lution levels for each pollutant separately. SVR is a machine learning technique
that can perform nonlinear regression by mapping the input data into a high-
dimensional feature space using a kernel function. We used a radial basis function
(RBF) kernel, which is a common choice for SVR models. We tuned the hyperpa-
rameters of the model using grid search and cross-validation, and selected the
optimal values as follows: a gamma value of 0.5, a regularization parameter of
10, and an epsilon parameter of 0.05. We trained the model on the training set
and tested it on the testing set. We evaluated the model by computing the root
mean squared error (RMSE) for each pollutant as an accuracy metric. The RMSE
measures the average deviation between the projected and actual pollution levels,
with lower values indicating better fit.

The results of models are as following:
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Figure 4.5: Time Series Forecasting using GRU Model
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Figure 4.6: Time Series Forecasting using LSTM Model
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Figure 4.7: Time Series Forecasting using Vanilla LSTM Model
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Figure 4.8: Time Series Forecasting using CNN-LSTM Model
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Figure 4.9: Time Series Forecasting using SVR Model
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Models RMSE Exe-Time (sec) Accuracy R-Squared

GRU Models 58.708 3,103 76.25 0.594
CNN-LSTM Models 57.547 3,756 76.95 0.671
LSTM Models 58.532 4,326 75.73 0.591
Vanilla LSTM Models 58.437 1,305 76.04 0.573
SVR Models 06.874 78 96.40 0.873
Table 4.1: Result on Pollution Dataset (PM2.5)

Models RMSE Exe-Time (sec) Accuracy R-Squared
GRU Models 81.283 3,658 78.94 0.445
CNN-LSTM Models  74.067 3478 78.27 0.734
LSTM Models 80.457 3,324 78.69 0.695
Vanilla LSTM Models 81.960 1,825 78.16 0.564
SVR Models 04.889 69 98.70 0.936

Table 4.2: Result on Pollution Dataset (PM10)

Models RMSE Exe-Time (sec) Accurecy R-Squared
GRU Models 12.009 2,285 84.40 0.780
CNN-LSTM Models  11.152 248 85.46 0.757
LSTM Models 11.877 915 85.17 0.770
Vanilla LSTM Models 13.671 652 82.72 0.995
SVR Models 01.162 115 98.47 0.919

Table 4.3: Result on Pollution Dataset (NO2)

Models RMSE Exe-Time (sec) Accuracy R-Squared
GRU Models 2.517 906 86.70 0.775
CNN-LSTM Models  1.818 353 85.86 0.836
LSTM Models 2.530 828 86.61 0.822
Vanilla LSTM Models 2.522 506 86.45 0.743
SVR Models 0.941 87 93.70 0.773

Table 4.4: Result on Pollution Dataset (SO2)
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CHAPTER 5

Conclusions

This study aims to examine the relationship between air pollution and temper-
ature variables using quantile regression, a statistical technique that allows for
estimating the conditional median and other quantiles of the response variable.
Unlike ordinary least squares regression, which only captures the average effect
of the explanatory variables, quantile regression can reveal how the effect varies
across different levels of the pollution distribution, such as the 10th or 90th per-
centile. This method can provide more insights into the variability and diversity
of PM2.5, PM10, NO2, and SO2 concentrations, and help identify the changing
trends and causes of air pollution in different regions and seasons.

Apply deep learning models for time series forecasting on pollution data, and
to compare their performance with other conventional models. Deep learning
models are effective and powerful tools that can handle the complexity and un-
certainty of the pollution data, and capture the complex and nonlinear patterns in
the pollution levels. Among the deep learning models, the SVR model is selected
as the best model based on its accuracy and robustness. The SVR model is able to
forecast the pollution levels of PM2.5, PM10, NO2, and SO2 with high accuracy
and low error. The results of this study can provide valuable information for pol-
icy makers and environmental managers to monitor and control the air quality in
different regions and seasons.

This study has significant implications for the practical solutions of air quality
prediction and analysis. By applying advanced statistical and machine learning
techniques, this study can help humans to understand the trends and factors of
air pollution in India’s metro cities, and to design and implement appropriate
measures to mitigate its adverse impacts on human health and environment. This
study can also provide useful insights challenges of air pollution and its conse-

quences.

36



References

[1]

(2]

3]

[7]

P. Anand, R. Rastogi, and S. Chandra. A pinball loss function based support
vector quantile regression model. arXiv preprint arXiv:1908.06923, 2019.

P. Anand, R. Rastogi, and S. Chandra. A quantile regression model with
automatic accuracy control. arXiv preprint arXiv:1910.09168, 2019.

P. Anand, R. Rastogi, and S. Chandra. A new asymmetric -insensitive pinball
loss function based support vector quantile regression model. Applied Soft
Computing, 94:106473, 2020.

M.-A. C. Bind, B. A. Coull, A. Peters, A. A. Baccarelli, L. Tarantini, L. Can-
tone, P. S. Vokonas, P. Koutrakis, and J. D. Schwartz. Beyond the mean: quan-
tile regression to explore the association of air pollution with gene-specific
methylation in the normative aging study. Environmental health perspectives,
123(8):759-765, 2015.

Y.-S. Chang, H.-T. Chiao, S. Abimannan, Y.-P. Huang, Y.-T. Tsai, and K.-M.
Lin. An Istm-based aggregated model for air pollution forecasting. Atmo-
spheric Pollution Research, 11(8):1451-1463, 2020.

Y. Cheng, X. Li, Z. Li, S. Jiang, and X. Jiang. Fine-grained air quality moni-
toring based on gaussian process regression. In Neural Information Processing:
21st International Conference, ICONIP 2014, Kuching, Malaysia, November 3-6,
2014. Proceedings, Part 11 21, pages 126-134. Springer, 2014.

S. K. Dhaka, G. Longiany, V. Panwar, V. Kumar, S. Malik, N. Singh, A. Dimri,
Y. Matsumi, T. Nakayama, S. Hayashida, et al. Trends and variability of pm?2.
5 at different time scales over delhi: Long-term analysis 2007-2021. Aerosol
and Air Quality Research, 22:220191, 2022.

S. Dutta, S. Ghosh, and S. Dinda. Urban air-quality assessment and inferring
the association between different factors: A comparative study among delhi,
kolkata and chennai megacity of india. Aerosol Science and Engineering, 5:93—
111, 2021.

37



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

K. Hu, V. Sivaraman, H. Bhrugubanda, S. Kang, and A. Rahman. Svr based
dense air pollution estimation model using static and wireless sensor net-
work. In 2016 IEEE SENSORS, pages 1-3. IEEE, 2016.

S. K. Jindal, A. N. Aggarwal, and A. Jindal. Household air pollution in in-
dia and respiratory diseases: current status and future directions. Current
Opinion in Pulmonary Medicine, 26(2):128-134, 2020.

P. Joshi, N.J. Raju, N. S. Siddaiah, and D. Karunanidhi. Environmental pollu-
tion of potentially toxic elements (ptes) and its human health risk assessment
in delhi urban environs, india. Urban Climate, 46:101309, 2022.

P. Kumar. A critical evaluation of air quality index models (1960-2021). En-
vironmental Monitoring and Assessment, 194(5):324, 2022.

S. Kumar and S. Dwivedi. Impact on particulate matters in india’s most pol-
luted cities due to long-term restriction on anthropogenic activities. Environ-
mental Research, 200:111754, 2021.

Y. Liu, J. Tian, W. Zheng, and L. Yin. Spatial and temporal distribution char-
acteristics of haze and pollution particles in china based on spatial statistics.
Urban Climate, 41:101031, 2022.

A. Loganathan, P. Sumithra, and V. Deneshkumar. Estimation of air quality

index using multiple linear regression. AEES, 10:717-722, 2022.

S. Mandal, K. K. Madhipatla, S. Guttikunda, I. Kloog, D. Prabhakaran, J. D.
Schwartz, and G. H. I. Team. Ensemble averaging based assessment of spa-

tiotemporal variations in ambient pm2. 5 concentrations over delhi, india,
during 2010-2016. Atmospheric Environment, 224:117309, 2020.

S. A.Meo, S. A. Algahtani, R. A. AlRasheed, G. M. Aljedaie, R. M. Albarrak,
et al. Effect of environmental pollutants pm2. 5, co, 03 and no2, on the inci-
dence and mortality of sars-cov-2 in largest metropolitan cities, delhi, mum-
bai and kolkata, india. Journal of King Saud University-Science, 34(1):101687,
2022.

A. Mhawish, C. Sarangi, P. Babu, M. Kumar, M. Bilal, and Z. Qiu. Observa-
tional evidence of elevated smoke layers during crop residue burning season
over delhi: Potential implications on associated heterogeneous pm2. 5 en-
hancements. Remote Sensing of Environment, 280:113167, 2022.

38



[19] A. Mishra, Z. M. Jalaluddin, and C. V. Mahamuni. Air quality analysis and
smog detection in smart cities for safer transport using machine learning (ml)
regression models. In 2022 IEEE 11th International Conference on Communica-
tion Systems and Network Technologies (CSNT), pages 200-206. IEEE, 2022.

[20] A.S. Mohan and L. Abraham. An ensemble deep learning model for fore-
casting hourly pm2. 5 concentrations. IETE Journal of Research, pages 1-14,
2022.

[21] Z. Mushtaq, P. S. Bangotra, S. Sajad, A. S. Gautam, M. Sharma, K. Singh,
Y. Kumar, P. Jain, S. Gautam, et al. Comparative analysis of particulate matter
(pm2. 5, pm10) and trace gases (so2, no2, 03) in between satellite derived data

and ground based instruments. 2023.

[22] S. Nenavath. Impact of fintech and green finance on environmental qual-
ity protection in india: By applying the semi-parametric difference-in-
differences (sdid). Renewable Energy, 193:913-919, 2022.

[23] S. Pandya, T. R. Gadekallu, P. K. R. Maddikunta, and R. Sharma. A study of
the impacts of air pollution on the agricultural community and yield crops
(indian context). Sustainability, 14(20):13098, 2022.

[24] A.K. Sharma, P. Baliyan, and P. Kumar. Air pollution and public health: the
challenges for delhi, india. Reviews on environmental health, 33(1):77-86, 2018.

[25] G. K. Sharma, A. Tewani, and P. Gargava. Comprehensive analysis of ambi-
ent air quality during second lockdown in national capital territory of delhi.
Journal of Hazardous Materials Advances, 6:100078, 2022.

[26] M. Sharma, E. Gupta, and D. Viji. Air quality index (aqi) prediction using au-
tomated machine learning with tpot-ann. In 2023 International Conference on
Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Com-
putational Intelligence (RAEEUCCI), pages 1-9. IEEE, 2023.

[27] S. Swain, S. Sahoo, and A. K. Taloor. Groundwater quality assessment using
geospatial and statistical approaches over faridabad and gurgaon districts of
national capital region, india. Applied Water Science, 12(4):75, 2022.

[28] Q. Tao, E. Liu, Y. Li, and D. Sidorov. Air pollution forecasting using a deep
learning model based on 1d convnets and bidirectional gru. IEEE access,
7:76690-76698, 2019.

39



[29] E. Yao and H.-G. Miiller. Functional quadratic regression. Biometrika,
97(1):49-64, 2010.

[30] Q.Zhang,].C.Lam, V.O.Li, and Y. Han. Deep-air: A hybrid cnn-lstm frame-
work forfine-grained air pollution forecast. arXiv preprint arXiv:2001.11957,
2020.

40



	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	Motivation
	Overview of the (AQI) System
	Contribution
	Thesis Organization
	Literature Survey
	Pollution Analysis
	Estimating PM2.5 concentration using temperature variables
	Comparative analysis of pollutant gas levels in metro city
	Seasonal Trends of air pollution in india: causes and consequences
	Air pollution levels and compliance with international norms
	A Comparative Study and Application
	A statistically study of polluted gases in delhi city:
	Analysis of polluted gases
	Linear Regression Approach
	Quadratic regression Approach
	Gaussian Kernel Function Approach
	Quantile regression model with Pin Loss Fuunction
	Time Series Forecasting using Deep Learning Models
	GRU Model
	Vanilla LSTM Model
	Simple LSTM Model
	CNN-LSTM Model 
	SVR Model
	Conclusions
	References



