
Semantic Segmentation Based Object
Detection for Autonomous Driving

by

HARSH PRAJAPATI
202111074

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

July, 2023

Acknowledgments

I would like to express my heartfelt gratitude to Prof. Tapas Kumar Maiti, my
esteemed supervisor, whose profound expertise and unwavering commitment to
scholarly excellence have served as an invaluable compass throughout my thesis.
His profound insights, constructive critique, and steadfast encouragement have
significantly influenced the trajectory and caliber of my research. I am genuinely
appreciative of his mentorship and the opportunities he provided me to evolve as
a scholar.

I would also like to extend my sincere appreciation to Mr. Aditya Bhope, a
fellow scholar, for his support. His readiness to extend a helping hand and his
substantial contributions have enriched my understanding and significantly ele-
vated the outcomes of this research. I am grateful for the intellectual synergy, I
share and the bond of camaraderie, I have cultivated throughout this transforma-
tive journey.

Furthermore, I would like to convey my deep appreciation to my dear friend,
Vraj. His unwavering belief in my abilities, constant encouragement during chal-
lenging times, and unique capacity to offer fresh insights have been a continuous
source of inspiration. His support and friendship have played a pivotal role in
keeping me motivated and reinforcing the importance of balance and well-being
during this demanding process. I am genuinely thankful for his presence in my
life and the profound impact he had on my personal and academic growth.

ii

Contents

Abstract vi

List of Principal Symbols and Acronyms vi

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 About an Artificial Intelligent System 1
1.2 Semantic Segmentation and Challenges 3
1.3 Application of Semantic Segmentation 4
1.4 Semantic Segmentation for Autonomous Driving 4

2 Literature Survey 6
2.1 Robot Operating System (ROS) . 6

2.1.1 Use of ROS . 7
2.1.2 ROS Computation Graph Model 7
2.1.3 Nodes . 7
2.1.4 Master . 7
2.1.5 Topics . 8
2.1.6 Services . 8
2.1.7 Parameter Server . 9

2.2 Libraries and Tools . 9
2.2.1 Gazebo Simulator . 9
2.2.2 Point Cloud Library . 9
2.2.3 OpenCV . 10
2.2.4 ROS Bag . 10
2.2.5 Rviz . 11
2.2.6 Catkin . 11
2.2.7 ROS bash . 11

iii

2.2.8 ROS launch . 12
2.2.9 ROS Versions . 12

2.3 Object Detection Model . 13

3 YOLO Architecture 16
3.1 Introduction . 16
3.2 Versions . 17

3.2.1 YOLOv1 . 17
3.2.2 YOLOv2 . 18
3.2.3 YOLOv3 . 19
3.2.4 YOLOv4 . 20

3.3 Architecture . 21
3.4 Dataset . 24

3.4.1 Berkeley Dataset . 24
3.4.2 Labelling Tool . 25
3.4.3 Cityscapes Dataset . 26
3.4.4 Our Dataset . 28

3.5 Verification of YOLO Model . 29
3.5.1 Mode Variants . 29
3.5.2 Training . 30
3.5.3 Results . 32

3.6 Limitation . 39

4 Semantic Segmentation 40
4.1 Neural Architecture Search . 41
4.2 Teacher/Student Co-searching For Knowledge Distillation 42
4.3 FasterSeg . 43
4.4 Optimizing Search Space for Efficient Multi-Resolution Branching . 43

4.4.1 Searchable Multi-Resolution Branches 44
4.4.2 Selecting Optimal Operators for Enhanced Receptive Field

Coverage . 44
4.4.3 Searchable Super kernel For Expansion Ratios 45

4.5 Regularized Latency Optimization with Finer Granularity 45
4.6 Verifications . 46

4.6.1 Architecture Search . 46
4.6.2 Exploring the Effectiveness of Multi-Resolution Search Space

and Collaborative Search . 47
4.6.3 Results . 49

iv

5 Real-Time Experiments 53
5.1 Edge Device . 53
5.2 Use Cases . 54
5.3 Demonstration . 56

6 Conclusions 58

References 59

v

Abstract

This research focuses on solving the autonomous driving problem which is nec-
essary to fulfill the increasing demand of autonomous systems in today’s world.
The key aspect in addressing this challenge is the real-time identification and
recognition of objects within the driving environment. To accomplish this, we
employ the semantic segmentation technique, integrating computer vision, ma-
chine learning, deep learning, the PyTorch framework, image processing, and the
robot operating system (ROS). Our approach involves creating an experimental
setup using an edge device, specifically a Raspberry Pi, in conjunction with the
ROS framework. By deploying a deep learning model on the edge device, we aim
to build a robust and efficient autonomous system that can accurately identify
and recognize objects in real time.

vi

List of Tables

2.1 Depicted ROS versions published in numerous years. 12

3.1 Overview of YOLOv5 Different Model 30
3.2 Information of Hyper-parameters . 31
3.3 Model Performance Summary on Validation Dataset 31

4.1 Studies of Numerous Search and Training Strategies 47
4.2 Comparison of the models . 48

vii

List of Figures

1.1 Overview of the Thesis . 2

2.1 DA Logo . 8

3.1 Illustrates an overview of YOLO architectures. 23
3.2 Berkeley Deep Drive Dataset(1) . 25
3.3 Berkeley Deep Drive Dataset(2) . 25
3.4 LabelImg GUI tool. 26
3.5 Image from img8bit Cityscapes . 27
3.6 Image from gtFine Cityscapes . 28
3.7 Own Dataset(1) . 29
3.8 Own Dataset(2) . 29
3.9 Confusion Matrix . 33
3.10 Precision-Recall Curve . 34
3.11 F1-score Curve . 35
3.12 Original Cityscape Dataset Image . 35
3.13 Predicted Image of Cityscape Dataset 36
3.14 Original Image of Berkeley Dataset 37
3.15 Predicted Image of Berkeley Dataset 37
3.16 Original Image of Own Dataset . 38
3.17 Predicted Image of Own Dataset . 38

4.1 An overview of Neural Architecture Search 42
4.2 An overview of Multibranch Searching 43
4.3 Network Discovered by NAS Network 46
4.4 System Overview . 48
4.5 Orginal Cityscape Image . 49
4.6 Result Of Cityscape Image . 50
4.7 Orginal Berkeley Image . 50
4.8 Result Of Berkeley Image . 51
4.9 Orginal Own Dataset Image . 51

viii

4.10 Result Of Own Dataset Image . 52

5.1 Raspberry Pie Component . 54
5.2 ROS Process for Experiment . 57
5.3 Real time Experimental Setup . 57

ix

CHAPTER 1

Introduction

1.1 About an Artificial Intelligent System

An artificial intelligent (AI) system refers to a system that leverages artificial in-
telligence (AI) techniques to emulate or replicate human intelligence, showcasing
intelligent behavior. It incorporates various AI technologies, including computer
vision, natural language processing(NLP), machine learning(ML), and knowledge
representation, to perform tasks that typically require human intelligence. By uti-
lizing these AI capabilities, intelligent artificial systems can accomplish complex
activities with efficiency and accuracy.

In this work, we focused on the autonomous driving bot problem. The advent
of autonomous driving has transformed the automotive industry, accelerating the
development of intelligent systems capable of navigating roads without human
involvement. However, numerous critical obstacles must be addressed to achieve
safe and dependable autonomous driving. Among these difficulties, object de-
tection and recognition are critical in assuring the vehicle’s ability to observe and
interact with its surroundings. This thesis focuses on applying AI technology to
tackle the segmentation of different objects in autonomous driving.

Autonomous driving systems rely mainly on their capacity to detect and rec-
ognize many items in their surroundings, such as pedestrians, vehicles, traffic
signs, and traffic lights. Precise and dependable object detection is crucial for au-
tonomous vehicles to make informed decisions, avoid obstacles, and protect pas-
sengers and other road users. We aim to improve object detection and recognition
skills of a autonomous driving bot by using AI algorithms and approaches.

Our primary goal is to develop an algorithm that achieves high accuracy in
real-time object detection while ensuring seamless deployment on edge device,
mentioned detailed in chapters 4 and 5. We observed that many existing algo-
rithms struggle to accurately identify objects under various conditions. This has
motivated us to find the most suitable algorithm to address these challenges ef-

1

fectively. In our final stage, we integrated the camera, model, and edge device us-
ing the robot operating system (ROS) to create an autonomous driving bot which
will explain in chapter 5. This comprehensive approach allows us to combine ad-
vanced object detection capabilities with the power of ROS, enabling the bot to
navigate autonomously.

To address the object detection problem, we thoroughly explored numerous
algorithms. After careful consideration, we concluded that computer vision al-
gorithms offer the most promising solution, specifically semantic segmentation.
The semantic segmentation technique excels in providing precise object bound-
aries, facilitating accurate identification. However, it is important to note that this
approach demands higher computational resources due to its inherent complex-
ity and detailed analysis. Despite the increased computational requirements, we
firmly believe that the advantages of precise boundary detection outweigh the as-
sociated resource demands. An overview of the thesis work is presented in Fig.
1.1.

Figure 1.1: Chapter wise overview of the thesis work.

2

1.2 Semantic Segmentation and Challenges

Semantic segmentation is a task in computer vision that poses a significant chal-
lenge which involves partitioning an image into distinct regions or segments and
assigning individual class labels to each pixel within the image [1]. Unlike con-
ventional image segmentation methods that primarily focus on separating objects
based on their boundaries, semantic segmentation aims to assign semantically
meaningful labels to each pixel, enabling a comprehensive understanding of the
image’s content.

It enables computers to perceive and comprehend visual scenes at the pixel
level, similar to how humans analyze and segment things within a picture. It is
critical in various applications, including autonomous driving, medical imaging,
robotics, augmented reality, and scene interpretation. Despite being a powerful
computer vision approach, semantic segmentation has various problems. Some
of the major issues in semantic segmentation are as follows:

Pixel-Level Accuracy: Achieving high pixel-level accuracy is a basic challenge
in semantic segmentation. It necessitates reliably assigning the correct class label
to each pixel in a picture, even when complicated backgrounds, occlusions, and
confusing boundaries are present. Working with fine-grained features and little
objects can be very difficult.

Class Imbalance: There is frequently a considerable class imbalance in many
semantic segmentation datasets, meaning some classes may have significantly
fewer pixels than others. This disparity can lead to biased learning and low per-
formance in minority classes. The class imbalance must be addressed to achieve
balanced and accurate semantic segmentation.

Boundary Ambiguity: When objects are adjacent or overlapping, the bound-
aries between various object instances or classes might be confusing. Separating
neighboring items with similar visual properties can be difficult, resulting in mis-
classifications or fragmented segmentation findings.

Limited Training Data: Semantic segmentation models necessitate a signifi-
cant quantity of labeled training data to acquire the complex relationship between
input images and pixel-level annotations. However, acquiring pixel-level annota-
tions for a large dataset can be expensive and time-consuming. Inadequate train-
ing data can result in overfitting or a lack of generalization in the model.

Computational Complexity: Semantic segmentation frequently includes deep
neural networks analyzing high-resolution images, which can be computationally
demanding. Real-time performance can be challenging for resource-constrained

3

devices or settings with severe latency constraints, necessitating optimization ap-
proaches, and efficient model structures.

Generalization to New Environments: Semantic segmentation methods trained
on specific datasets may struggle to generalize to new and unknown environ-
ments. Models trained on a single dataset may perform poorly when applied to
different domains or when lighting, weather, or camera views vary. It is a contin-
uous issue to ensure the resilience and generalization of semantic segmentation
models over a wide range of contexts.

1.3 Application of Semantic Segmentation

Semantic segmentation has numerous applications in a variety of disciplines. Here
are some notable examples:

Autonomous Driving: Semantic segmentation is essential for autonomous
cars to observe and interpret their surroundings. It aids in object identification,
path planning, and obstacle avoidance by accurately segmenting the scene into
multiple classes (e.g., roads, vehicles, pedestrians, traffic signs), boosting the safety
and efficiency of self-driving automobiles.

Augmented Reality and Scene Understanding: Semantic segmentation helps
with scene understanding by providing a detailed grasp of the objects and their
spatial layout in an image or video. It utilizes in augmented reality apps to pre-
cisely overlay virtual objects on top of the actual world, ensuring perfect occlusion
and interaction with the surroundings.

Medical Imaging: Semantic segmentation in medical imaging aids in correctly
delineating and identifying various structures and organs in medical scans such
as MRI, CT, or ultrasound. It is used to aid in diagnosis, treatment planning, and
medical research by performing tasks such as tumor identification, organ segmen-
tation, and tissue classification.

Urban Planning and Environmental Analysis: By recognizing and analyzing
distinct features in aerial or satellite data, semantic segmentation can aid urban
planning and environmental analysis. It helps with land-use classification, infras-
tructure mapping, vegetation analysis, and environmental change monitoring.

1.4 Semantic Segmentation for Autonomous Driving

Semantic segmentation plays a crucial role in object identification and recognition
within the field of autonomous driving. It enables the identification and classifi-

4

cation of diverse road objects by assigning individual class labels to each pixel in
an image. Within the context of autonomous driving, the following components
are essential for semantic segmentation in object detection and recognition:

Object Localization: Semantic segmentation allows precise pixel-level local-
ization of items in the scene. It enables autonomous vehicles to correctly deter-
mine the borders of various things, such as cars, pedestrians, bicycles, and barri-
ers, by segmenting each object instance separately.

Fine-Grained Object Understanding: Semantic segmentation enables fine-
grained object understanding by providing specific class labels to each pixel. This
level of granularity enables autonomous vehicles to distinguish between different
object categories, such as car types, traffic sign changes, or pedestrian attributes.

Handling Occlusions: Semantic segmentation aids in handling occlusions,
which occur when other objects partially or entirely obscure objects. Autonomous
cars can properly assess their positions and sizes by segmenting the viewable ar-
eas of occluded objects, assisting in collision avoidance and maneuvering deci-
sions.

Real-Time Object Detection: Semantic segmentation techniques are specifi-
cally designed to operate in real time, providing efficient and continuous detec-
tion and recognition of objects. This capability is crucial in self-driving systems
as it ensures timely perception and response, which are essential for safe and effi-
cient operation.

5

CHAPTER 2

Literature Survey

2.1 Robot Operating System (ROS)

"ROS: An Open-Source Robot Operating System" by [2] is a seminal study in this
field. This key work introduces ROS as an open-source software framework for
robotics research and development. It describes ROS’s architecture, communica-
tion processes, and essential features, emphasizing its benefits in fostering collab-
oration and code reusability in robotics. "The Robot Operating System 2 (ROS2)"
by [3] is another noteworthy study. In this section, we summarized details of ROS
developments and enhancements. It emphasizes performance, scalability, real-
time capabilities, and expanded support for many programming languages and
platforms. ROS2 intends to solve some of ROS1’s drawbacks by providing a more
robust and dependable platform for constructing complicated robotic systems.

Robot Operating System (ROS), an open-source middleware suite [2] widely
adopted for robot software development. This chapter covers the goals of ROS,
its design principles, the libraries and tools it provides, and details of ROS ver-
sions. ROS is not an actual operating system, it provides a collection of soft-
ware frameworks for developing robot software. It offers various services for
heterogeneous computer clusters, including hardware abstraction, low-level de-
vice control, implementation of commonly used functionalities, message-passing
between processes, and package management. The execution of ROS-based pro-
cesses is represented by a graph architecture, where nodes perform various tasks
such as receiving, posting, and multiplexing messages related to control, state,
planning, actuators, and sensor data. It is important to note that although ROS is
not designed for real-time systems, it can be utilized in conjunction with real-time
computing software to address low latency and responsiveness requirements for
robot control.

6

2.1.1 Use of ROS

ROS primarily aims to facilitate code reuse in research and development. ROS of-
fers distributed processes that allow for independent and loosely connected run-
time execution. These processes can be categorized into simple stacks and pack-
ages to share and distribute. The ROS platform’s design, from the filesystem to
the community level, allows for independent development and implementation
decisions. Further advantages of the ROS framework include its small architec-
ture, support for all modern languages, including Python, C++, and Lisp, and its
built-in unit, called ROS-test.

2.1.2 ROS Computation Graph Model

In the ROS framework, nodes are the individual processes that form a graph struc-
ture. These nodes communicate with each other via topics, which are connected
by edges. Additionally, nodes can make service calls to other nodes, provide ser-
vices to other nodes, and access shared data from the parameter server. The ROS
master facilitates this communication by establishing node-to-node connections
for topics and managing changes to the parameter server. Once nodes register
themselves with the master, the master establishes direct peer-to-peer connec-
tions between the nodes, eliminating the need for messages and services to pass
through the master.

2.1.3 Nodes

In the ROS Graph, a node represents a single process, and each node must register
its unique name with the ROS master before carrying out any further operations.
It is important to note that multiple nodes with different names can exist under
different namespaces, and nodes can also be identified anonymously. Nodes serve
as the central component in ROS programming, where client code typically takes
the form of a ROS node. These nodes interact with other nodes by receiving infor-
mation, taking corresponding actions, and sending information to other nodes.

2.1.4 Master

The ROS master plays a crucial role in facilitating the discovery of ROS nodes. It
enables nodes to locate and establish communication with each other in a peer-to-
peer manner. Once the nodes have successfully discovered one another through

7

the master, they can establish direct communication channels and exchange infor-
mation seamlessly.

2.1.5 Topics

Topics in the ROS framework serve as a communication channel for nodes to ex-
change messages. Each topic has a unique and namespace-restricted name to
ensure proper identification. The publish-subscribe model is employed, where
nodes can publish messages to a specific topic and subscribe to receive messages
from a topic. This anonymous approach allows nodes to transmit and receive
messages without revealing their identities to other nodes. Only the content of
the messages, which can include directives, state information, sensor data, con-
trol data, or other relevant information, is transmitted over the topic.

Figure 2.1: Illustrates ROS nodes publish and subscribe to topics.

2.1.6 Services

Nodes in the ROS system can provide services that define specific actions with a
well-defined outcome. Services are commonly used for actions with a clear start
and end, such as capturing a single frame or executing a hardware command.
Nodes can advertise their services to other nodes and call services others provide,
enabling interaction between them.

8

2.1.7 Parameter Server

The parameter server in the ROS system acts as a distributed database, offering
public access to static and semi-static data. It is utilized to store data that remains
relatively unchanged or maintains a constant value throughout the execution of
the system. The parameter server is distributed among the nodes, allowing them
to retrieve and utilize the stored data as needed.

2.2 Libraries and Tools

2.2.1 Gazebo Simulator

Gazebo Simulator is a powerful robotics research and development tool [4] con-
nected with ROS. It provides a realistic physics-based simulation environment for
testing robot behaviors and algorithms prior to deployment. The integration fa-
cilitates effective communication by allowing smooth data transmission between
ROS nodes and the simulation. The visualization features of Gazebo allow for
real-time debugging and validation of perception algorithms.

It also allows for the visualization of robot models and positions, which aids in
comprehension and examination. The connection with ROS encourages compati-
bility with other ROS tools and libraries, facilitating the building of sophisticated
robotic systems. Overall, when paired with ROS, Gazebo Simulator provides a
complete solution for expediting development, optimizing algorithms, and en-
hancing the performance of robotic systems.

2.2.2 Point Cloud Library

The Point Cloud Library (PCL) is a widely used open-source framework [5] that
revolutionized 3D perception and processing. PCL provides a complete collection
of methods and tools for dealing with and modifying point cloud data, allowing
researchers and developers to extract useful information from 3D sensor data.

Point clouds are dense collections of 3D points depicting objects and scenes’
shapes and structures. PCL provides diverse point cloud processing techniques,
including registration, segmentation, filtering, feature extraction, and surface re-
construction. Users may utilize these algorithms to analyze raw 3D sensor data,
extract valuable characteristics, and segregate items of interest within a point
cloud. PCL is suitable for various data sources since it supports several types
of 3D sensors, including RGB-D cameras, LiDARs, and stereo cameras. The li-

9

brary offers tools for interactive data exploration and efficient data structures for
handling and storing point clouds.

Additionally, PCL offers connections with other well-known libraries, includ-
ing OpenCV and Eigen, to further expand its functionalities. Robotics, computer
vision, augmented reality, and autonomous driving are industries where PCL is
used. Using PCL, tasks like environment mapping, object detection, and robot
localization are made possible in robotics. It allows 3D scene interpretation, re-
construction, and augmented reality in computer vision. In autonomous driving,
PCL is essential in point cloud-based perception for object recognition, tracking,
and scene interpretation. PCL is continuing to develop 3D perception, opening
up ground-breaking applications across numerous industries.

2.2.3 OpenCV

OpenCV is a widely-used open-source library [6] for machine learning and com-
puter vision algorithms. It offers a comprehensive collection of pre-implemented
methods and functions for various computer vision applications. With over 2000
optimized algorithms, it encompasses a combination of classic and state-of-the-
art techniques in computer vision and machine learning. The integration of ROS
with OpenCV enables the utilization of powerful features such as object detec-
tion, tracking, and identification. Additionally, ROS extends OpenCV’s capabili-
ties through libraries like image pipelines, enabling functionalities such as camera
calibration, monocular and stereo image processing, and depth image processing.

2.2.4 ROS Bag

ROSbag is a robust tool in the Robot Operating System (ROS) ecosystem that en-
ables users to capture, save, and replay ROS-targeted data. It functions as a flex-
ible data logging and playback system, allowing researchers and developers to
collect and analyze data from various sensors and robot components.

ROSbag works by recording messages published on ROS topics over a set of
periods. Any information communicated between ROS nodes can be included in
these messages, such as sensor data, control instructions, and others. The cap-
tured data is kept in a message storage container and treated as a bag file.

One of ROSbag’s primary features is its ability to capture and playback data
offline. This implies that the recorded bag file can be played back later, allowing
users to examine and analyze the data without needing the original device or
sensors. This capability is beneficial for debugging and testing since it allows

10

developers to analyze system behavior, assess algorithms, and detect problems in
a controlled and repeatable manner.

Furthermore, ROSbag is not confined to recording and playing back on a single
machine. Bag files are exchanged and moved across different ROS environments,
allowing data sharing and cooperation across platforms. ROSbag extends ROS’s
capabilities by allowing data-driven research and assessment of robot systems

2.2.5 Rviz

RViz is a powerful visualization tool [7] frequently used in robotics to help with
robot perception, planning, and debugging. It is a component of the Robot Oper-
ating System (ROS) architecture that provides a user-friendly interface for visual-
izing robot sensor data, robot models, and planning trajectories in 3D.

Rviz allows users to view many sorts of sensor data, such as point clouds, laser
scans, camera pictures, and odometry. This enables the visualization and study
of the robot’s perception of its surroundings in real-time. Robot operators and
researchers may get valuable insights into the robot’s behavior, uncover possible
difficulties, and validate the efficiency of perception algorithms by visualizing
sensor data. It’s adaptability and extensibility make it an invaluable tool for both
research and development.

RViz has a plethora of plugins and options that allow users to tailor the vi-
sualization to their requirements. Furthermore, RViz interfaces effortlessly with
other ROS packages, allowing data sharing and interaction with other robot sys-
tem components.

2.2.6 Catkin

The structure of ROS is built using the Catkin build system. Based on CMake,
Catkin is a cross-platform, open-source, and language-independent build system
used in ROS.

2.2.7 ROS bash

The utility to extend the capabilities of the bash shell is provided by the rosbash
package. These tools, which replicate the functions of ls, cd, and cp, include rosls,
roscd, and roscp. We used the ROS package name instead of the file path where
the package is placed, thanks to recent updates to the ros.

11

2.2.8 ROS launch

The roslaunch utility enables the launching of multiple ROS nodes either locally
or remotely, while the ROS parameter server allows for the specification of param-
eters. By utilizing XML-based configuration files, the roslaunch tool simplifies the
process of automating complex startup and configuration tasks into a single com-
mand.

2.2.9 ROS Versions

Distribution Name Release Date Image

ROS Noetic Ninjemys May 23 , 2021

ROS Melodic Morenia May 23, 2018

ROS Lunar Loggerhead May 23, 2017

ROS Kinetic Kame May 23, 2016 x

Table 2.1: Depicted ROS versions published in numerous years.

12

2.3 Object Detection Model

Fast R-CNN, a popular deep learning architecture for object detection [8], has lim-
itations such as computational intensity, difficulty in handling small objects, lack
of temporal consistency, and the need for extensive labeled training data for each
object class. To address these limitations and achieve precise boundary detec-
tion, researchers have extended Fast R-CNN with techniques like Mask R-CNN.
Mask R-CNN, introduced by He et. al., (2017), incorporates pixel-level instance
segmentation, enabling accurate object masks and precise boundary detection in
autonomous driving scenarios. This influential paper introduces Mask R-CNN
[9], a state-of-the-art instance segmentation method. While this paper focuses on
the strengths and advantages of Mask R-CNN, it indirectly highlights some lim-
itations of instance segmentation. For example, it mentions the computational
complexity associated with generating instance-specific masks and the challenges
in handling overlapping instances.

An instance-aware semantic segmentation method [10] that combines seman-
tic segmentation with instance-specific localization. Although it emphasizes the
benefits of instance-awareness, the paper indirectly acknowledges the increased
computational complexity and annotation burden associated with instance seg-
mentation compared to semantic segmentation. Furthermore, this work proposes
[11] a weakly supervised instance segmentation approach and highlights the limi-
tations of instance segmentation. It discusses the challenges of handling occlusion
and overlapping instances, as well as the higher annotation burden required for
instance segmentation compared to semantic segmentation. The study aims to
address these limitations by leveraging weak supervision to generate instance-
level object masks. Semantic segmentation, a fundamental problem in computer
vision, has advanced dramatically in recent years.

"Fully Convolutional Networks for Semantic Segmentation" was notable in
this field [1]. The authors present a ground-breaking method for pixel-wise se-
mantic segmentation that employs fully convolutional neural networks (FCNs).
This work established the groundwork for future advances in deep learning-based
semantic segmentation systems.

Another significant article is "DeepLab: Semantic Image Segmentation with
Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs" by
[12]. DeepLab, which integrates dilated convolutions and completely connected
conditional random fields (CRFs), is proposed by the authors to improve segmen-
tation accuracy. DeepLab’s robust performance and real-time processing capabil-

13

ity have led to its widespread use in autonomous driving applications.
Furthermore, the study "ENet: A Deep Neural Network Architecture for Real-

Time Semantic Segmentation" by [13] introduces ENet, a lightweight network ar-
chitecture intended exclusively for real-time semantic segmentation. ENet bal-
ances segmentation accuracy and computing efficiency, making it suited for resource-
constrained applications like autonomous driving.

In addition, [14] paper "LinkNet: Exploiting Encoder Representations for Effi-
cient Semantic Segmentation" proposes LinkNet, a network architecture that uses
encoder representations to improve semantic segmentation efficiency. LinkNet
achieves competitive performance using fewer processing resources, making it
ideal for real-time autonomous driving applications.

Moreover, the paper "ICNet for Real-Time Semantic Segmentation on High-
Resolution Images" by [15]. (2018 presents ICNet, a network architecture that
addresses the challenge of real-time semantic segmentation on high-resolution
images. ICNet utilizes a multi-scale and cascaded architecture to achieve accuracy
and efficiency, making it suitable for high-resolution inputs often encountered in
autonomous driving scenarios.

Next,We investigate the improvements and contributions of Neural Architec-
ture Search (NAS) in the context of semantic segmentation for autonomous driv-
ing. Reinforcement learning combined with NAS has emerged as a powerful tech-
nique for automatically developing appropriate network designs that increase
segmentation accuracy and efficiency in autonomous driving scenarios.

"Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Im-
age Segmentation" by [16] is a seminal paper. To automatically determine the
ideal architecture for semantic segmentation, the authors present a hierarchical
search space and a reinforcement learning-based search method. On benchmark
datasets, Auto-DeepLab achieves better performance and has been effectively ap-
plied to semantic segmentation in the context of autonomous driving.

The study "ENAS: Efficient Neural Architecture Search via Parameter Shar-
ing" by [17] describes an effective NAS strategy that combines parameter sharing
among child models. While the ideas of ENAS have not been primarily focused
on semantic segmentation in autonomous driving, they have been adapted and
applied to the task, resulting in breakthroughs in NAS for semantic segmentation.

The paper "Progressive Neural Architecture Search" by [18] offers a sequential
model-based NAS optimization approach. This approach combines evolution-
ary search with reinforcement learning to identify designs with improved per-
formance effectively. Progressive NAS has been used successfully for a variety

14

of tasks, including image classification and object recognition, and it has the po-
tential to be extended to semantic segmentation in the context of autonomous
driving.

We investigated several algorithms in our pursuit of performing the objective
with minimal latency and improved accuracy. We started with the YOLO (You
Only Look Once) architecture, explained in chapter 3, which we trained on the
Berkeley dataset. This method produced positive results, displaying good accu-
racy across various settings. However, we ran across several limits that drove us
to look into different strategies, eventually prompting us to investigate semantic
segmentation.

Through thorough research, we extensively explored real-time semantic seg-
mentation approaches to fulfill our objectives. We aim to discover an advanced
deep-learning solution that would meet the specific requirements of our applica-
tion. During our investigation, we identified a state-of-the-art method that ex-
hibited exceptional performance. This approach underwent training using the
well-established such as cityscape dataset, berkeley dataset and subsequently un-
derwent evaluation using our own dataset. Chapter 3 covers an in-depth analysis
and description of the datasets.

By employing this established technique, we aim to enrich the efficiency and
precision of our autonomous driving system. Through meticulous experimenta-
tion and evaluation, we sought to address the challenges associated with real-time
object detection and recognition, ultimately improving the overall performance
and reliability of the system.

15

CHAPTER 3

YOLO Architecture

3.1 Introduction

Object detection, a fundamental problem in computer vision, involves locating
and identifying objects within images or videos. This capability finds applications
in diverse fields, such as robotics, autonomous driving, surveillance systems, and
image understanding. In the context of our autonomous driving bot task, real-
time and efficient object identification is crucial. We turn to YOLO (You Only
Look Once), a renowned and influential framework to fulfill this requirement.

In this chapter, we explored the various improvements made in each version
of YOLO, highlighting their evolution over time. Additionally, we provided a
concise overview of the YOLOv5 architecture, which has gained significant trac-
tion. Furthermore, we presented the results of applying the YOLO model to three
different datasets, assessing its performance and capabilities.

YOLO’s real-time object detection abilities have attracted much interest in the
computer vision world. By allowing objects to be recognized in one pass through
the network, the initial YOLO architecture[19], announced in 2016, revolution-
ized the industry. However, later iterations of YOLO, such as YOLOv2 [20] and,
YOLOv3 [21], YOLOv4 [22], addressed these issues and added enhancements to
improve detection accuracy and handle objects of various sizes. The latest version,
which is used, The YOLOv5 framework, distinguishes itself from other object
identification frameworks with several distinctive features. It uses a simplified
architecture that blends components from earlier YOLO iterations and integrates
advance methods. With this architecture, YOLOv5 can reach desirable precision
and real-time inference performance, making it appropriate for various applica-
tions.

The versatility and flexibility of YOLOv5 is one of its primary characteristics.
It offers many model types in various sizes so that we can choose the best bal-
ance between model complexity, speed, and accuracy based on their unique re-

16

quirements. Additionally, YOLOv5 makes use of the PyTorch [23] deep learning
framework, which makes it simple to develop, train, and deploy models.

3.2 Versions

Prior work of object detection uses the classifier to detect the object. Instead,
YOLO formulates the issue of object detection as a regression to spatially sepa-
rated bounding boxes and related class probabilities. In YOLO Architecture, a
single neural network predicts the bounding box and its associated class proba-
bility in one pass.

3.2.1 YOLOv1

The initial iteration of YOLO [19] demonstrated superior speed compared to other
object detection models. By treating detection as a regression problem, we elimi-
nate the need for a complex pipeline. Our base network achieves a frame rate of
45 frames per second on a Titan X GPU, while a faster version operates at over 150
frames per second. This allows us to process streaming video in real-time with a
latency of less than 25 milliseconds.

Furthermore, YOLO exhibits the advantage of leveraging the entirety of the in-
put image during both the training and testing phases, thereby acquiring implicit
knowledge about the contextual information and appearance of various object
classes. This unique approach enables YOLO to acquire generalized representa-
tions of objects, ensuring robustness in its detection capabilities. When trained on
real photos and assessed on artistic imagery, YOLO demonstrates superior perfor-
mance compared to prominent object detection algorithms like DPM and R-CNN
[24], surpassing them by a substantial margin.

Originally YOLOv1 was trained over the Pascal VOC benchmark dataset, which
has fixed 20 classes. This model gives the flexibility to train over the custom
dataset to predict the desirable classes according to the application. Despite its
substantial contributions to the area, the first version of YOLO had numerous
limits and disadvantages:

• Localization Accuracy: YOLO has trouble accurately localizing small ob-
jects. The model can have trouble accurately localizing items with fine de-
tails or those substantially smaller than the grid cell size since it divides the
input image into a grid and assigns a bounding box to each grid cell.

17

• Inability to Handle Overlapping Objects: YOLO finds it challenging to lo-
cate and reliably detect things with close distances or overlaps. In some sit-
uations, the model might have trouble assigning the appropriate boundary
boxes, which could result in overlapping or erroneous detections.

• Limited Class Representation: The initial YOLO model was built to find
items in a predetermined set of 20 classes. It may only generalize well to
items within the initial class set, even though it can be trained on custom
datasets to detect more classes. This constraint limits the model’s adaptabil-
ity and applicability to a wider range of item detection applications.

3.2.2 YOLOv2

YOLOv2 (You Only Look Once version 2) [20] is an upgraded version of the orig-
inal YOLO object detection framework. This release improves the performance of
object detection by addressing a number of issues and adding new functionality.
There are key improvements over the previous version of the YOLO :

• Multi-Scale Training and Testing: Multi-scale training and testing is one
of YOLOv2’s main improvements. The YOLOv1 model had a fixed input
size, which restricted its capacity to identify objects of various sizes. By
using images with different resolutions to train and test the model, YOLOv2
addresses this. Using this method, YOLOv2 can identify objects at various
scales with higher precision.

• Anchor Boxes: Anchor boxes are a new idea introduced in YOLOv2 to en-
hance bounding box predictions. YOLOv2 predicts the offset values relative
to a series of preconfigured anchor boxes of various sizes and aspect ratios
rather than directly predicting bounding box coordinates. With the help of
this technique, the model is better equipped to manage object variations,
increasing the robustness and accuracy of localization.

• Darknet-19 Architecture: The network architecture used by YOLOv2 is
known as Darknet-19 and comprises 19 convolutional layers. This architec-
ture makes Better object detection performance possible, which enhances the
model’s total feature representation capabilities. Darknet-19 enables real-
time object detection on various hardware platforms by striking a compro-
mise between model complexity and processing performance.

• High-Resolution Classifier: A high-resolution classifier is incorporated into
YOLOv2 to improve classification accuracy. This classifier is included at the

18

network’s end and works with the final feature maps to provide more pre-
cise information for class predictions. The YOLOv1 grid structure’s draw-
backs are lessened by the high-resolution classifier, which also enhances the
detection of small objects.

There are some disadvantages of this version of the YOLO, Even though this
version has some improvements over the previous version:

• Accuracy of Localization for Small Objects: Like YOLOv1, YOLOv2 can
have trouble correctly localizing small items, especially if they are consider-
ably smaller than the anchor box sizes.

• Difficulty in Handling Overlapping Objects: YOLOv2 may have trouble
accurately recognizing and localizing objects that are close to each other or
overlap. In these circumstances, the model can have trouble designating
distinct bounding boxes for various objects, resulting in overlapping or er-
roneous detections.

• Higher Computational Requirements: YOLOv2’s enhanced architecture
and multi-scale approach require more computational resources than the
original YOLOv1.

3.2.3 YOLOv3

YOLOv3 (You Only Look Once version 3) [21] is a powerful object detection frame-
work that builds on the achievements of its previous generations, YOLO and
YOLOv2. In order to significantly improve the effectiveness of object detection,
YOLOv3 fixes several issues from earlier versions and adds new features.

• Improved detection accuracy of various scales: One of the main goals of
YOLOv3 is to improve detection accuracy. In order to accomplish this, YOLOv3
uses a feature pyramid network (FPN) architecture, which permits the ex-
traction of multi-scale features. To better capture objects at various scales
and improve detection performance, YOLOv3 makes use of features from
various network layers with different spatial resolutions.

• Darknet 53: YOLOv3 also introduces the idea of "darknet-53," a more com-
plex and effective network architecture than its predecessors. The darknet-
53 backbone network uses advanced convolutional layers and residual con-
nections to acquire detailed and abstract representations of objects, enhanc-
ing localization and discrimination.

19

Despite its improvements, YOLOv3 has certain drawbacks and restrictions.
These consist of:

• Higher computational demands: The darknet-53 architecture’s increased
complexity and the multi-scale approach lead to higher computational de-
mands than in previous versions.

• Limited handling of overlapping objects: YOLOv3, like its predecessors,
may have difficulty accurately detecting and localizing closely located or
overlapping objects.

3.2.4 YOLOv4

This version has come with a new architecture concept, giving better accuracy
than the earlier version of Yolo [25]. Also, this version includes Some key features
improved and added some new concepts:

• The primary objective of YOLOv4 [22] is to push the boundaries of object
detection performance by leveraging the latest advancements in deep learn-
ing, network architecture design, and optimization techniques. It addresses
several challenges encountered in previous versions and introduces innova-
tive features to improve detection accuracy, handling of small objects, and
overall efficiency.

• Implementing a more advanced backbone network called CSPDarknet53 is
one of the main improvements in YOLOv4. This architecture makes greater
information flow, feature reuse, and enhanced performance possible by com-
bining the advantages of the Darknet-53 backbone from YOLOv3 with Cross-
Stage Partial (CSP) connections. The CSPDarknet53 backbone improves the
capabilities of feature representation, enabling more precise object detection.

• Many optimization approaches are also introduced by YOLOv4, such as
the Mish activation function, which enhances gradient propagation and net-
work convergence. It uses a modified spatial pyramid pooling (SPP) mod-
ule that gathers features at multiple scales to help identify objects of various
sizes. The PANet (Path Aggregation Network) module is also presented, ag-
gregating features from several network stages to improve the capability to
handle objects of different sizes.

Despite its advancements, YOLOv4 has limitations and disadvantages, includ-
ing:

20

• With its innovative design and optimization methods, YOLOv4 requires a
lot of processing power. In order to operate at peak efficiency, it could be
necessary to have powerful hardware and enough memory.

• The performance of YOLOv4 is strongly influenced by carefully adjusting
its hyperparameters, including learning rates, weight decay, and augmen-
tation techniques. It frequently takes a lot of experimenting and parameter
searching to get the finest results.

• The advanced design and optimization approaches of YOLOv4 cause longer
training times relative to earlier versions. It can take longer to train YOLOv4
from the beginning, especially when working with massive datasets.

3.3 Architecture

Yolo’s most recent version was used. Yolov5 architecture is made to give real-
time object detection jobs an effective and adaptable solution. In order to increase
detection accuracy and runtime performance, it integrates components from the
previous version and introduces novel techniques. An overview of the YOLOv5
architecture is provided below:

• Backbone Network: A vital element of the YOLOv5 architecture, the back-
bone network is essential for extracting valuable characteristics from input
images. It lays the foundation for further object detection phases and allows
the model to record low-level and high-level visual data.

The CSPDarknet53 architecture is used as the foundation for the YOLOv5
backbone network. Cross Stage Partial connections, or CSP, is a method
that improves the gradient flow during training and increases the network’s
capacity for learning. The Darknet backbone utilized in YOLOv4 was opti-
mized for usage in the CSPDarknet53 backbone.

The backbone network comprises convolutions layers that gradually down-
sample the input image. These layers use learnable filters to perform convo-
lution operations to extract features at various spatial resolutions. Through
the sequential application of these operations, the network gathers local and
global contextual data, enabling the model to understand the input image.

The CSPDarknet53 [26] backbone uses many strategies to improve model
effectiveness and feature extraction capabilities. It includes residual con-
nections, which improve gradient propagation during training and ease the

21

vanishing gradient problem by facilitating the information flow through
skip connections. These skip connections allow the network to concurrently
learn fine-grained and high-level characteristics, capturing both semantic
and detailed information.

In addition, the CSPDarknet53 backbone combines various convolutional
layer types, including standard convolutions, dilated convolutions, and spa-
tial pyramid pooling. The network is robust to objects of diverse sizes and
aspect ratios thanks to these differences in convolutional procedures allow-
ing the network to collect features at different receptive fields and scales.

YOLOv5 delivers a robust feature representation that aids in efficient object
detection by utilizing the CSPDarknet53 backbone network.

• Neck: The neck acts as a link between the backbone network and the detect-
ing head. Its foremost duty is to combine features gathered by the backbone
network of varied resolutions and sizes and prepare them for object detec-
tion.

In YOLOv5, the neck comprises numerous layers, including a concatenation
layer, a PANet layer, and several convolutions layers. The concatenation
layer is in charge of merging backbone network features of various scales
and resolutions, while the PANet layer is the duty of feature fusion.

PANet [27], which stands for "Path Aggregation Network", is a feature fu-
sion module that increases network detection efficiency by merging features
of various sizes. The PANet layer is divided into two parts: top-down and
bottom-up pathways. The top-down pathway is in the role of upsampling
and fusing features from higher-resolution feature maps, while the bottom-
up pathway is for lower-resolution feature maps.

YOLOv5’s neck comprises many convolutions layers that enhance the fused
features, concatenation, and paint layers. These layers carry out operations
like normalization, activation, and pooling to improve the expressiveness
and discriminability of the feature representation.

• Head: The YOLOv5 architecture’s last step is the head, responsible for gen-
erating bounding box predictions and class probabilities. It uses the fused
features from the neck to perform the operations required to localize and
classify objects in the input image.

In YOLOv5, the head comprises multiple prediction heads, each connected
with a different stride. The stride specifies the spatial resolution of the fea-

22

ture map on which it operates. The heads work in parallel, allowing the
model to identify things at different scales and locations at the same time.

Figure 3.1: Illustrates an overview of YOLO architectures.

Each prediction head is comprised of convolutions layers followed by an-
chor boxes. The anchor boxes are predefined bounding box priors that cap-
ture the different aspect ratios and sizes of the training dataset’s objects. The
convolutions layers enhance the neck features and forecast bounding box
coordinates and class probabilities.

Each head’s prediction is then processed using non-maximum suppression
(NMS) [28], eliminating duplicate bounding boxes and picking the most
confident ones. Multiple predictions for the same object are merged into
a single accurate bounding box by NMS, eliminating repeat detections.

The prediction heads in YOLOv5 utilize the benefits of an improved YOLO
detection method. By combining anchor-based and anchor-free techniques,
the model can handle objects of various sizes and aspect ratios better. By
using this method, the detection accuracy is increased, and YOLOv5 is made
robust to various object transformations.

The head in YOLOv5 also adds more methods to improve detection perfor-
mance. Leaky ReLU (Rectified Linear Unit) and sigmoid activation func-
tions introduce non-linearity and improve the modeling of complicated ob-
ject boundaries and class probabilities. Additionally, methods like binary
cross-entropy loss and focal loss are used to improve the model’s parame-
ters during training.

23

3.4 Dataset

The availability of high-quality datasets is critical for developing robust and effi-
cient algorithms for autonomous driving. These datasets are essential for training
and assessing computer vision models, which allow them to recognize and com-
prehend the complex real-world surroundings encountered on the road. Three
notable datasets have emerged as invaluable resources in this context: our own
dataset, the Berkeley DeepDrive BDD100K dataset, and the Cityscapes dataset.
This chapter presents detailed technical information about all three datasets, ac-
companied by visual representations of the images. Furthermore, it includes a
discussion on the dataset labeling tool

3.4.1 Berkeley Dataset

The Berkeley DeepDrive BDD100K dataset is a large-scale, diversified dataset in-
tended for computer vision research and development, particularly on autonomous
driving. It was developed by the Berkeley DeepDrive project in partnership with
UC Berkeley researchers and the BDD Industry Consortium. BDD100K is an ab-
breviation for "Berkeley DeepDrive 100,000".

The BDD100K dataset includes various urban driving situations collected in
various locations, weather conditions, and times of the day. It is made up of about
100,000 video sequences, each of which contains numerous frames. The dataset
is annotated painstakingly with pixel-level semantic segmentation, item bound-
ing boxes, lane markings, and other pertinent metadata. One of the BDD100K
dataset’s key characteristics is its extensive annotation schema. It provides de-
tailed annotations for various autonomous driving-related objects, such as auto-
mobiles, pedestrians, bicycles, traffic signs, and traffic signals. These annotations
allow researchers and developers to train and assess computer vision models in
the context of autonomous driving for tasks such as object detection, semantic
segmentation, and scene interpretation.

Furthermore, the BDD100K dataset is one of a kind in terms of diversity, in-
cluding a wide range of driving scenarios and environmental conditions. Because
of this variety, it is ideal for training and assessing robust models that can deal
with real-world issues faced in autonomous driving applications. Figures 3.2 and
3.3 represent the images obtained from the BDD100K dataset.

24

Figure 3.2: Berkeley deep-drive dataset (1). Source: https://bdd-
data.berkeley.edu

Figure 3.3: Berkeley deep-drive dataset (2). Source: https://bdd-
data.berkeley.edu

3.4.2 Labelling Tool

LabelImg is a popular open-source graphical annotation tool for labeling images
with bounding boxes for various computer vision tasks. It has been a popular al-
ternative for annotating object detection datasets due to its user-friendly interface

25

and diverse capabilities. Users can use the tool to create bounding boxes around
objects of interest inside a picture, which act as annotations to define the object’s
location and extent. It allows one to name several things within a single photo-
graph, making it ideal for annotating complex scenarios.

LabelImg is remarkable for its support for numerous annotation formats, no-
tably Pascal VOC and YOLO. This adaptability allows customers to select the for-
mat that best meets their specific requirements and integrate it easily with their
preferred training pipeline or structure. Furthermore, the tool supports customiz-
able class labels, allowing users to specify and apply labels to the annotated ob-
jects. We used this tool (figure 3.4) and labeled the 300 images from the Berkeley
deep drive dataset in the format of YOLO.

Figure 3.4: LabelImg GUI tool.

3.4.3 Cityscapes Dataset

The Cityscapes dataset is popular and influential in computer vision research [29]
for autonomous driving. It is specifically developed to overcome the difficulties
of interpreting and seeing urban street scenes. The dataset contains pixel-level
annotations of high quality for a variety of semantic segmentation tasks.

There are two major components in the Cityscapes dataset: img8bit and gtFine.
High-resolution RGB images recorded from stereo video sequences make up the
img8bit component. These photographs depict real-world urban views [30] in
various lighting, weather, and traffic scenarios. The photos are saved in 8-bit

26

PNG format, which provides a wealth of visual data for training and assessing
computer vision models.

The Cityscapes dataset’s gtFine component includes pixel-level annotations
for semantic segmentation. It includes annotations for 19 classes, including roads,
sidewalks, buildings, plants, cars, pedestrians, and various object and structural
types. Each pixel in the image is labeled with a different class, allowing for a more
detailed comprehension of the urban environment. These annotations are saved
as PNG pictures, each pixel representing a different class label.

Combining the img8bit and gtFine components in the Cityscapes dataset en-
ables researchers to train and evaluate semantic segmentation models for urban
scene understanding. Using pixel-level annotations, Computer vision algorithms
can effectively segment and identify distinct objects and regions inside urban en-
vironments. This dataset has aided in advancing algorithms and models for tasks
including object detection, instance segmentation, and scene understanding in
the context of autonomous driving. The Cityscapes dataset repository consists
of original images (figure 3.5) stored in the "img8bit" directory, with the corre-
sponding labeled images (figure 3.6) located in the "gtfine" repository.

Figure 3.5: Image from img8bit Cityscapes.

27

Figure 3.6: Image from gtFine Cityscapes.

3.4.4 Our Dataset

We have developed our own dataset specifically designed to evaluate the perfor-
mance of used models in the context of the Indian scenario. While there are pub-
licly available benchmark datasets, they may not encompass all the diverse and
complex scenarios encountered in India, such as a mix of structured and unstruc-
tured data, rural and urban areas, varying road conditions, and diverse traffic
scenarios. Hence, we created our dataset to address these specific requirements
and evaluate the proposed segmentation model’s performance in an Indian con-
text.

For data collection, we utilized a Samsung S23 model capable of capturing
videos at a resolution of 1028 * 2048 pixels. The videos were recorded at a con-
sistent frame rate of 60 frames per second. In total, our dataset comprises five
videos, each with a duration of 15 minutes. By capturing real-world footage us-
ing this setup, we aimed to simulate the Indian driving environment and provide
a comprehensive dataset for evaluation purposes. we present two images from
this repository. These images offer insights into the unique characteristics and
challenges of driving in India.

28

Figure 3.7: Image from our dataset (1).

Figure 3.8: Image from our dataset (2).

3.5 Verification of YOLO Model

3.5.1 Mode Variants

Yolo version 5 architecture offers multiple models variant. Each model has a dif-
ferent size and complexity represented in Table 3.1. We used the miniature model,
which better suits our application and gives better results with minimum latency.

29

Model mAP Parameters Flops
YOLOv5n 28.0 1.9 4.5
YOLOv5s 37.4 7.2 16.5

YOLOV5m 45.4 21.2 49.0
YOLOV5l 49.0 46.5 109.1
YOLOV5x 50.7 86.7 205.7

Table 3.1: Overview of YOLOv5 different model.

3.5.2 Training

The YOLOv5s model includes pre-trained weights trained on large-scale datasets
such as COCO (Common Objects in Context) [31] to capture generic object recog-
nition features. These pre-trained weights can fine-tune the model on the target
dataset or directly infer new photos.

Employing the pre-trained YOLOv5s model can benefit from the knowledge
and representations obtained during the pretraining phase. These pre-trained
weights give the model’s parameters a good start, allowing it to converge faster
during fine-tuning and achieve more remarkable performance. The trained YOLOv5s
model captures a wide range of objects and their visual features from the COCO
dataset, which has 80 object categories. It learns to detect things of diverse sizes,
aspect ratios, and positions, allowing it to generalize effectively to other recogni-
tion of objects tasks.

We used this pre-trained weight of yolov5s and trained over the benchmarked
dataset, Berkeley, and labeled this dataset with 14 different classes according to
our application needs. We labeled 300 images and divided them into training
and validation. We labeled only 300 images with 14 classes to experiment on the
YOLO model. These images are divided into 60% (180 images) training, 30% (90
images) validation, and 10% (30 images) testing.

The hyper parameters were carefully configured during the training phase
based on the available resources. All relevant information regarding the hyper
parameters is presented in the provided Table 3.2.

It is essential to evaluate the model’s performance on a validation set during
training to assess its accuracy and make necessary improvements. Mean average
precision (mAP) and other evaluation measures are frequently used to assess the
model’s detection performance. This model uses the mAP to measure the perfor-
mance. Additionally, two different matrices are used to measure the performance,
mAP@50 and mAP@50-95. The mAP@50 is the mean average precision at a 50%
detection threshold. It computes the model’s precision and recall when identified
detections with an intersection over union (IoU) overlap of 50% or greater with the

30

Parameters Value
Input Image Size 1024 x 1024 x 3

Batch Size 16
Learning Rate 0.01

Optimizer Stochastic Gradient Descent
Epochs 100

Momentum 0.937
Weight Decay 0.0005

Table 3.2: Hyper-Parameters

ground truth bounding boxes. It assesses the model’s ability to recognize items ac-
curately within a moderate overlap range with the ground truth. The mAP@50-95
broadens the evaluation range by considering a broader range of IoU thresholds
ranging from 50% to 95%. It computes the average precision over these thresh-
olds, thoroughly evaluating the model’s accuracy and precision across varying
levels of overlap with the ground truth. mAP@50 and mAP@50-95 are useful in-
dicators for assessing the performance of object identification models. They shed
insight into the model’s capacity to detect objects properly and consistently when
varied levels of IoU overlap are considered. Higher mAP values suggest better
performance and object-detecting capabilities.

During the training phase, the YOLOv5 model undergoes evaluation on the
validation dataset. The performance of the validation dataset is represented in a
Table 3.3 that includes the count of images and instances for specific classes. Ad-
ditionally, the table displays the precision and recall metrics and the mean average
precision (mAP) value.

Class Images Instances P R mAP50 mAP50-95
Car 33 142 0.234 0.972 0.806 0.0496
Poll 33 40 0.22 0.35 0.194 0.0656
Tree 33 19 0.0914 0.158 0.102 0.0372

House 33 7 1 0 0 0
Sign Board 33 21 0 0 0.0154 0.00677

Traffic Light 33 13 0.265 0.385 0.222 0.076
Person 33 17 0.345 0.125 0.213 0.0544
Truck 33 7 1 0 0.0467 0.0156

Divider 33 9 1 0 0 0
Bicycle 33 4 1 0 0 0

Bus 33 4 1 0 0.00485 0.000485
Pedestrian Crossing 33 1 1 0 0 0

Table 3.3: Model performance summary on validation dataset.

31

3.5.3 Results

The model’s performance is represented using matrices that measure its effec-
tiveness. Specifically, we evaluated the model’s performance during the training
process using metrics such as the F-score and precision-recall matrix. These ma-
trices are valuable tools for assessing the model’s performance and understand-
ing its accuracy and effectiveness. In the following discussion, we concisely de-
scribe each matrix and present the corresponding results, offering insights into
the model’s performance evaluation.

The confusion matrix is a popular method for assessing the performance of a
classification model, including object detection models such as YOLO. It provides
a comprehensive view of the model’s predictions and the actual ground truth la-
bels, allowing various assessment metrics to be calculated. The confusion matrix
presents in figure 3.9 the performance evaluation of our model across 14 different
classes. The x-axis of the matrix corresponds to the predicted values generated
by the classifier, while the y-axis represents the true values. This matrix provides
a comprehensive overview of the model’s performance regarding correctly and
incorrectly classified instances for each class.

Further, Precision and recall are two evaluation measures frequently employed
in machine learning and information retrieval applications, such as object detec-
tion. Precision measures the model’s ability to correctly identify positive instances
among the positive examples it predicts. It calculates the fraction of true positive
predictions made by the model out of all positive predictions. In other words, pre-
cision tells how many of the positive predictions are right. Precision is calculated
as TP / (TP + FP), where TP is the number of correct predictions, and FP is the
number of incorrect guesses. A high precision number suggests that the model
makes accurate positive predictions and has a low rate of false positives.

The model’s capacity to detect every positive instance in the dataset is mea-
sured by a recall, also known as sensitivity or true positive rate. It calculates the
fraction of true positive predictions among all positive instances. Recall reflects
how many positive instances the model accurately captures. The recall is calcu-
lated as TP / (TP + FN), where TP is the number of correct predictions, and FN is
the number of incorrect guesses. A high recall number implies that the model has
a low false negative rate and can detect most of the positive cases in the dataset.

Precision and recall have an inverse relationship. As the decision threshold
for forecasting positive instances is raised, the precision rises while the recall falls.
Lowering the choice threshold, however, boosts recall but may reduce precision.
The precision-recall trade-off is essential when determining the ideal balance be-

32

Figure 3.9: Illustrates the confusion matrix.

tween the two metrics. A higher value of the precision-recall curve indicates better
performance in terms of precision and recall. Inferring more precise positive pre-
dictions and effectively identifying a higher percentage of positive cases predicts
a reduced rate of false positives and false negatives.

The performance of our model is visualized in figure 3.10 through the Precision-
Recall curve . The figure illustrates that the model tends to make positive pre-
dictions for multiple classes, while the values for other classes are close to zero.
Our observations indicate that this behavior is influenced by the training dataset,
which contains a limited number of instances for those particular classes. The
count of instances for each class is provided in the accompanying Table 3.3, high-
lighting the potential reason behind the model’s suboptimal learning for those
specific classes.

The F1 curve provides insight into how precision and recall trade-off at certain
decision thresholds. It combines accuracy and recall into a single metric that con-
siders the model’s ability to detect positive occurrences properly and minimize
false positives. It is a balanced assessment of the model’s overall performance be-
cause it is the harmonic mean of precision and recall. Out Yolo Model predictions

33

Figure 3.10: Precision-recall curve.

are tested at multiple decision thresholds to generate an F1 curve. The decision
threshold specifies the level of certainty at which a predicted bounding box is con-
sidered a positive detection. Different trade-offs between precision and recall can
be detected by adjusting the decision threshold. The F1 curve depicts the F1 score
at various decision thresholds, visually depicting the model’s performance over
various operational points. In the experimental of our application, the F1-score of
all classes was 0.32 at the threshold 0.093, shown in figure 3.11

Our YOLO model underwent testing on diverse data sets to evaluate its per-
formance across various environments. Three distinct scenarios are considered
for this purpose. The first scenario involved a low-traffic environment, the sec-
ond scenario featured a moderate level of traffic, and the third scenario simulated
peak traffic conditions on the road.

The image in figure 3.12 from the cityscapes dataset depicts objects situated at
considerable distances from the car’s camera and captured under low-light con-
ditions. Consequently, the model’s performance (see figure 3.13) in predicting
certain classes, such as trees, poles, and traffic lights, was adversely affected. This
can be attributed to the inherent difficulty in accurately detecting and classifying
small-sized objects, particularly under such challenging conditions.

34

Figure 3.11: F1-score curve.

Figure 3.12: Original Cityscape dataset image.

35

Figure 3.13: Resultant image of Cityscape dataset.

36

Another image (see figure 3.14) from the Berkeley dataset exhibits shadows on
certain parts of the road, with limited areas illuminated by light. Under these con-
ditions, the YOLO model performs better than the cityscapes dataset as depicted
in figure 3.15. It successfully predicts all classes within the image, showcasing its
enhanced object detection and classification capability.

Figure 3.14: Resultant image of Cityscape dataset.

Figure 3.15: Resultant image of Cityscape dataset.

37

Further, the image (see figure 3.16) from our custom dataset portrays complete
roads with vehicles and the presence of trees and poles. Notably, the model per-
forms (see figure 3.17) well in this scenario, successfully detecting all the classes
within the images. However, it occasionally misclassifies certain instances, such
as mistaking an auto-rickshaw or a small truck for a car. Despite these occasional
mispredictions, the model’s overall performance remains commendable in accu-
rately identifying and labeling most classes in the images.

Figure 3.16: Resultant image of Cityscape dataset.

Figure 3.17: Resultant image of Cityscape dataset.

In conclusion, the YOLO model demonstrates good performance across var-
ious environmental conditions. However, further improvement can be achieved

38

by training the model on a larger dataset encompassing a more comprehensive
range of light conditions and smaller objects. Exposing the model to a more di-
verse training set is expected to exhibit enhanced performance, surpassing the
current capabilities of the model.

3.6 Limitation

Despite the YOLO architecture’s reputation for robustness and exceptional per-
formance in object detection, it poses certain limitations for our research system.
One of these limitations is the lack of precise boundary information provided by
its bounding box output, which is crucial for accurate object identification. Ad-
ditionally, YOLO’s reliance on a single-scale feature map may impede its ability
to effectively detect objects of varying scales, posing challenges in complex real-
world driving scenarios.

To overcome these limitations, we explored alternative methods and opted
for semantic segmentation, described in Chapter 4. By leveraging semantic seg-
mentation, we obtain precise object boundaries, addressing the need for accurate
object identification and recognition in our autonomous driving system. This de-
cision allows us to enhance the reliability and effectiveness of our system, as se-
mantic segmentation provides detailed and accurate object boundary delineation,
surpassing the limitations of YOLO’s bounding box output.

39

CHAPTER 4

Semantic Segmentation

Semantic segmentation, which assigns a unique label to each pixel in an image, is
critical in computer vision applications such as autonomous driving, scene inter-
pretation, and robotics. Real-time semantic segmentation is critical in applications
that require quick and precise perception. However, due to the computational
complexity of existing approaches, attaining real-time semantic segmentation on
resource-constrained devices remains difficult.

We used a novel approach dubbed FasterSeg to handle the difficulty of attain-
ing real-time semantic segmentation [32]. Our goal is to improve the efficiency
of semantic segmentation networks while maintaining a balance of speed and
accuracy, especially on devices with low processing capabilities. Using neural
architecture search techniques, FasterSeg seeks to construct optimized network
architectures that can give rapid and high-quality segmentation results. We will
delve into the intricacies of this technique in subsequent sections, including a sys-
tem overview and a comprehensive discussion of the results obtained on various
data sets to evaluate its performance. The primary motivation for FasterSeg de-
rives from the fact that classic semantic segmentation networks, such as DeepLab,
FCN, and PSPNet, frequently suffer from high processing demands, making them
unsuitable for use in real-time applications [33]. To overcome this issue, we use a
search algorithm to search a wide design space of network architectures for effi-
cient building blocks and network configurations that maximize inference perfor-
mance while maintaining segmentation accuracy.

Furthermore, FasterSeg employs the teacher-student distillation technique to
deploy the model in lightweight devices. It transfers knowledge from an accu-
rate, computationally expensive teacher network to a quick and effective student
network. By balancing speed and precision, this information transfer enables the
student network to perform segmentation in a competitive manner in real-world
situations.

The search strategy of FasterSeg is guided by a comprehensive set of perfor-

40

mance metrics encompassing speed and accuracy evaluations. We utilize estab-
lished metrics like mean Intersection over Union (mIoU) and frames per second
(FPS) to evaluate the segmentation quality and inference speed. To explore the
architectural space efficiently, we design a multi-objective optimization problem
to strike the optimal balance between speed and accuracy. This enables the search
algorithm to navigate through the possibilities effectively.

In order to validate the effectiveness of FasterSeg, extensive tests are con-
ducted on various benchmark datasets, including Cityscapes, Berkeley deep drive,
and our own dataset. We establish its superiority by comparing FasterSeg’s per-
formance to state-of-the-art semantic segmentation methods, such as manually
created networks and existing architecture search approaches and also showed
the comparision with other models in section 4.6.2.

FasterSeg exhibits impressive enhancements in real-time performance, as ev-
idenced by experimental results. The model’s training on a combination of the
Cityscapes and Berkeley benchmarked datasets contributes to this notable im-
provement. Unlike the Cityscapes dataset, which focuses solely on urban envi-
ronments, the Berkeley dataset encompasses a broader range of environments.
This diverse training approach enables FasterSeg to achieve higher frames per
second (FPS) while maintaining a competitive level of segmentation precision.
These results underscore the effectiveness of FasterSeg in effectively balancing
the trade-off between speed and accuracy.

4.1 Neural Architecture Search

Neural Architecture Search (NAS) is an automated method [33] for discovering
optimal neural network architectures. This technique generates and evaluates
alternative network architectures using a controller neural network commonly
based on recurrent neural networks (RNNs). Based on the performance of the pro-
duced architectures, the controller network is trained using reinforcement learn-
ing to maximize a reward signal. The overview of the NAS is represented in figure
4.1. The Neural Architecture Search (NAS) process involves an iterative approach
of sampling and evaluating network architectures based on decisions made by
the controller network. These decisions encompass various aspects, such as the
number and types of layers and their connections. The sampled architectures are
then trained and evaluated to obtain performance metrics that guide the search
for improved architectures. This iterative process allows for exploring different
architectural configurations, leading to the discovery of architectures that demon-

41

strate better performance.

Figure 4.1: An overview of neural architecture search

4.2 Teacher/Student Co-searching For Knowledge Dis-

tillation

Teacher-student knowledge distillation is a machine learning technique to trans-
fer knowledge from a more complex model (the teacher) to a smaller and more
efficient model (the student). This approach [34] involves the mentorship of the
student model by the teacher model during the training process, providing addi-
tional information.

The teacher model guides the student model by sharing its knowledge in the
form of soft targets, which are the output probabilities of the teacher model or fea-
ture embeddings from intermediate layers. The primary objective of knowledge
distillation is to enable the student model to acquire the generalization abilities
and knowledge of the teacher model.

By leveraging the knowledge distillation technique, the student model can
achieve comparable or superior performance to the teacher model while main-
taining computational efficiency. This approach allows for the effective transfer
of knowledge, enabling smaller models to benefit from the expertise and capabil-
ities of larger models.

42

4.3 FasterSeg

Our FasterSeg architecture was developed based on a multi-resolution search
space that draws inspiration from previous manual design achievements. To mit-
igate the "architecture collapse" issue, we incorporated fine-grained latency reg-
ularization techniques proposed by [35] in their InstaNAS work. Additionally,
we leveraged a teacher-student co-searching framework to enhance our FasterSeg
model further, resulting in a compact yet highly accurate student network.

4.4 Optimizing Search Space for Efficient Multi-Resolution

Branching

FasterSeg incorporates a multi-resolution branching search space, allowing for
optimization of branches with different output resolutions. The head module
progressively aggregates these outputs. Each cell is independently searched, with
variable downsampling speeds (s) and two inputs/outputs. The search process
explores expansion ratios within a single super kernel. Efficient cells with search-
able super kernels are automatically selected and combined to form branches of
various resolutions.

Figure 4.2: Overview of multibranch searching [32].
courtesy of :https://arxiv.org/abs/1912.10917

43

4.4.1 Searchable Multi-Resolution Branches

Our framework introduces a novel approach by incorporating a multi-resolution
strategy within L-layer cells (see figure 4.2). These cells are designed to receive in-
put from two interconnected predecessors and generate two distinct feature maps
with varying resolutions. This concept of leveraging multiple branches with dif-
ferent resolutions has demonstrated its efficacy in hand-crafted networks tailored
explicitly for real-time segmentation applications [15] [36]. However, the current
state of NAS algorithms has been constrained to exploring single backbone archi-
tectures, limiting their optimization potential.

We aim to select b branches with different final output resolutions, enabling
investigation and decoding of each branch using backtrace. This approach allows
our NAS framework to explore b individual branches gradually learned and ag-
gregated by the head module (see figure 4.2).

To increase model capacity while minimizing latency, we adopt the tradition
of increasing the number of channels with each resolution downsampling. We
utilize our stem module to downsample the input image to 1/8 of the original
scale and set searchable downsample rates at 8, 16, and 32.

4.4.2 Selecting Optimal Operators for Enhanced Receptive Field

Coverage

To optimize inference latency in our approach, we prioritize the execution speed
of operators as a direct metric rather than relying on indirect metrics such as
FLOPs (floating-point operations). One operator candidate that effectively re-
duces FLOPs and parameter count [37] is group convolution, as it achieves the
same receptive field as standard convolution while being significantly faster. In
contrast, dilated convolution [38], despite its comparable FLOPs and parameter
count, exhibits higher latency. To address this discrepancy, we introduce a novel
variation called zoomed convolution, which applies sequential bilinear down-
sampling, standard convolution, and bilinear upsampling to the input feature
map. This design reduces latency by 40% compared to standard convolution and
increases the receptive field by 2x. Within our search space, we include optimized
operators that incorporate these advancements.

• skip connection

• 3 x 3 conv

• 3 x 3 conv. x 2

44

• Zoomed Conv : bilinear downsampling + 3 x 3 conv. ++ bilinear sampling

• Zoomed Conv. x 2: bilinear downsampling + 3 x 3 conv. x 2 + bilinear
sampling

4.4.3 Searchable Super kernel For Expansion Ratios

To provide diversity to the choices of channel expansion ratios, we give each cell
the ability to select different ratios. However, calculating the ideal connection
width between succeeding cells poses a significant task due to the huge num-
ber of conceivable combinations. To overcome this, we present a differentiably
searchable super kernel implementation that directly examines and probes the
expansion ratio within a single convolutional kernel. This super kernel supports
a wide range of ratios designated as U ⊂ N+.

We use a strategic method during the architectural exploration phase in which
a singular expansion ratio[39][40] is sampled, activated, and then back-propagated
for each super kernel at each stochastic gradient descent step. Using the well-
praised "Gumbel-Softmax" technique, we may streamline the overall supernet-
work architecture while improving memory efficiency.

Within our search space, we stick to the standard practice of gradually increas-
ing the number of channels as the resolution decreases. This is accomplished by
defining the width as U × v, where v has the values 8, 16, and 32.

4.5 Regularized Latency Optimization with Finer Gran-

ularity

Achieving reduced latency while keeping optimal performance is a difficult task.
A previous study ([35] [41]) has discovered a reoccurring problem in the search
process: the supernet or search strategy frequently becomes stuck in unfavorable
"local minimums". These local minimums produce structures with reduced la-
tency but impaired accuracy, especially in the initial phases of exploration. It has
been discovered that the overuse of skip connections, rather than emphasizing
low expansion ratios [42], contributes to the condition known as "architecture col-
lapse". We present a novel technique that employs fine-grained and decoupled
latency regularisation to address this issue.

Our analysis demonstrates that the supernet’s susceptibility to varied opera-
tors (P), downsampling rates (d), and expansion ratios (U) is the primary cause of

45

the "architecture collapse" problem. Notably, operators such as 3 × 3 conv. 2 and
zoomed conv have significant latency differences. Similarly, slender and broad
expansion ratios show a noticeable delay difference. Downsampling rates such
as "8" and "32" have insignificant differences because they involve doubling the
input and output channels.

Building on these findings, we provide a systematic strategy to optimize la-
tency through regularisation, using the various granularities covered by our search
space. We measure supernet latency at three granularities (P, d, U) and use differ-
ent regularisation factors for each facet.

Latency(P, d, U) = w1Latency(P|d, U)+w2Latency(d|P, U)+w3Latency(P|U, d)

4.6 Verifications

4.6.1 Architecture Search

The supernet architecture comprises a total of H = 16 layers, while the chosen
downsample rate is denoted as d={ 8, 16, 32}. In our investigation, the default
setting for branches is b = 2, as introducing additional branches would lead to
a substantial increase in latency. For each downsample rate d and layer H, we
thoroughly explore a range of expansion ratios represented by χd,H ∈ U = {4, 6,
8, 10, 12}. The multi-resolution branches encompass a comprehensive set of 1695
distinct pathways. Taking into account the combinations of cells and expansion
ratios, the resulting search space comprises approximately (1+ 4× 5)(15+14+13) +

53 ≈ 3.4 × 1055 possibilities. This expanded search space presents a significantly
larger and more formidable exploration challenge compared to initial investiga-
tions.

Figure 4.3: FasterSeg network discovered by our NAS framework [32].
courtesy of :https://arxiv.org/abs/1912.10917

The architecture search is carried out on the Cityscapes dataset.The image res-
olution used for this is 1024 * 2048. 4.4 depicts the best spatial resolution found

46

in the FasterSeg Method. Also, our method can achieve multi-resolutions with
appropriate depths. The first three operators are shared by both branches, after
which they diverge and opt to aggregate outputs with downsampling rates of 16
and 32.

4.6.2 Exploring the Effectiveness of Multi-Resolution Search Space

and Collaborative Search

To evaluate the efficiency of our NAS design, we do experiments on the Cityscapes
dataset and Berkeley dataset. We look specifically at the effects of operators (P),
distillation on correctness, expansion ratios (U), latency, and downsample rate
(d). There is a trade-off between frames per second (FPS) and mean Intersection
over Union (mIoU) as we shift from a single backbone (b = 1) to many branches
(b = 2), illustrating the usefulness of the multi-resolution design for segmenta-
tion tasks. By experimenting with different expansion ratios (U), we uncover a
quicker network with an FPS of 160 and a high accuracy of 70 %. This demon-
strates the benefit of our searchable super kernel in minimizing duplicate chan-
nels while maintaining accuracy. Our collaborative research framework promotes
the growth and advancement of the student network (S).

Congfiguration MIoU% FPS FLOPs Parameters
P, d|U = 8, b = 1 66 177 27.0G 6.3M
P, d|U = 8, b = 2 69.5 119.9 42.0G 10.8M

Teacher(T) and Student(S) Co-searching
S : P, d, U|b = 2 70 160 28.2G 4.4M
T → prunedT 66.1 146.7 29.5G 4.7M

T → S 73.1 163.9 28.2G 4.4M

Table 4.1: Studies of numerous search and training strategies

We are continuing to assess the impact of our collaborative research frame-
work in enabling teacher-student collaboration. We derive a teacher architecture
(T) and a student architecture (S) from the collaborative search procedure. As pre-
viously stated, the student architecture S is obtained by investigating searchable
expansion ratios (U), yielding an FPS of 163 and a mIoU of 70%. On the other
hand, direct compression of the teacher’s architecture with distillation training
achieves only a mIoU of 66% and an FPS of 146. This demonstrates our architec-
ture co-searching approach’s superiority over pruning-based compression strate-
gies. We use knowledge distillation from a well-trained teacher architecture to im-
prove the student’s accuracy further, resulting in a final FasterSeg network with

47

Methods MIoU% FPS Resolutions
ENet 58.3 76.9 512 * 1024
ICNet 67.7 37.7 1024 * 2048

BiSeNet 69.0 105.8 768 *1536
FasterSeg 73.1 163.9 1024 * 2048

Table 4.2: Comparison of the models

an accuracy of 73.1%.

Figure 4.4: System overview with settings of parameters.

We conduct evaluations on the Cityscapes test and own dataset to assess the
performance of FasterSeg. The mean Intersection over Union (mIoU) and infer-
ence speed are measured using the original image resolution 1024x2048. Our re-
sults, as presented in Table 4.1, demonstrate that FasterSeg achieves an impressive
FPS of 163.9, even at the highest image resolution. This remarkable frame rate
surpasses human-designed networks by more than 1.3 times. Also, it gives a bet-
ter result than another model that only trained over the cityscapes dataset since
the FasterSeg model learns all complex scenarios of the cityscapes and Berkeley
dataset. The comparison is shown in table (4.2). Additionally, FasterSeg main-
tains competitive accuracy, achieving a mIoU of 73.1% on the validation set and
71.5% on the test set. When evaluated on our original dataset, the supernet ar-
chitecture achieved an accuracy of 63.5%. It is worth noting that these high levels
of precision are achieved solely through fine-annotated cityscapes images and an-
other benchmarked Berkeley dataset without additional data.

48

4.6.3 Results

We utilized the FasterSeg model to conduct experiments on three distinct datasets,
namely Berkeley, Cityscape, and our own dataset, encompassing various scenar-
ios. Through this evaluation, we aimed to assess the model’s performance and
accuracy across different image datasets. In the first scenario, we examined an
image (see figure 4.5) with low lighting conditions and a relatively simple sur-
rounding environment, featuring objects such as traffic signs, pedestrians, and
cars. We observed that the model successfully segmented (see figure 4.6) all the
objects in the image and accurately predicted their respective classes. This indi-
cates a promising performance of the model in this particular scenario.

Figure 4.5: Original Cityscape Image

In figure 4.7, an image taken from the Berkeley dataset under dim light con-
ditions is presented. Upon examining the model’s performance on this image, it
is evident that several objects appear overlapped and incorrectly identified. The
model (figure 4.8) struggles to effectively segment objects in areas with low light,
resulting in compromised accuracy.

Furthermore, an image (figure 4.9) from our own dataset is showcased, cap-
turing a scenario that includes small objects, cars, poles, people, buildings, and
trees. The model’s performance on the Indian driving scenario demonstrates no-
table improvement compared to the Berkeley dataset. In this case, the model suc-
cessfully (figure 4.10) segments all the objects in the image, showcasing precise
boundaries for each object. This indicates that the model performs well in accu-
rately identifying and segmenting objects in the Indian driving scenario.

49

Figure 4.6: Result Of Cityscape image.

Figure 4.7: Original Berkeley image.

50

Figure 4.8: Result of Berkeley image.

Figure 4.9: Illustrates own dataset image.

51

Figure 4.10: Result of Own dataset image.

52

CHAPTER 5

Real-Time Experiments

We used the Raspberry Pi, initially released in 2012, is a lightweight single-board
computer available in different models, including A, B, and Zero. This compact
device encompasses a range of components that be explored in the subsequent
sections. Beyond its size, the Raspberry Pi functions as a fully-fledged computer,
capable of connecting peripherals such as a mouse, keyboard, and screen. It pro-
vides a user-friendly Linux desktop environment that can be effortlessly set up
and configured. Moreover, the Raspberry Pi is not restricted to a single operat-
ing system and supports various lightweight OS options, offering versatility in its
usage.

5.1 Edge Device

Further, edge computing, in general, focuses on processing and analysing data in
close proximity to where it is generated or used. This technique has several ad-
vantages, including lower latency, higher data privacy, and increased durability in
settings with limited or inconsistent network connectivity. By using the Raspberry
Pi as an edge device, developers may harness the potential of local data process-
ing, allowing for more efficient and responsive real-time apps, IoT deployments,
and edge analytics. Components of Raspberry Pi are described below:

1. General Purpose Input/Output (GPIO): The GPIO is a key feature of the
Raspberry Pi, allowing connections to various electronic components such
as LEDs, motors, relays, and sensors. It facilitates both reading and transfer-
ring electronic signals between the Raspberry Pi and connected devices.

2. Ethernet/USB/HDMI ports: The Ethernet connector allows to connect to the
network through a cable. A USB connector is also available for connecting
a mouse, keyboard, web camera, and USB devices. Moreover, the HDMI
connector allows the screen to be shown on a projector or monitor.

53

Figure 5.1: Raspberry Pi diagram labeled with various components. Resource:
https://www.raspberrypi.org

3. Audio Jack: This component of the raspberry pie enables audio functioning.
Connect headphones or a speaker to this component to make the system
audible.

4. Wi-Fi: The Raspberry Pi also has Wi-Fi built in, enabling users to connect to
wireless networks without a wired connection being required.

5. Bluetooth: The Raspberry Pi has built-in Bluetooth capability that enables
users to connect to Bluetooth peripherals like speakers, headphones, and
other audio equipment.

6. Camera Module Port: This port connects the Raspberry Pi camera. Do not
connect the web camera since it can connect to a USB port.

7. Micro USB power: Raspberry pie necessitates a 5V steady power supply.
The power supply is therefore attached to this port.

8. Micro SD Card: Micro SD card is used to store the data. Here, the SD Card
serves as the bootable card by storing the operating system and enabling the
raspberry pie board to boot from it. It also functions as a hard drive, storing
all the users’ private files.

5.2 Use Cases

The Raspberry Pi is a flexible and inexpensive computer that can be used for a
range of applications. Here are some popular Raspberry Pi applications:

The Raspberry Pi is a flexible and inexpensive computer that can be used for a
range of applications. Here are some popular Raspberry Pi applications:

54

• Home Automation: The Raspberry Pi is an ideal device for building a home
automation system because of its inexpensive cost and great level of cus-
tomization. It can be used with software such as Home Assistant to control
lighting, measure the temperature, security systems, and other devices.

• Robotics: The Raspberry Pi is a generous system for building robots. It can
also be programmed in languages like Python, C or used to operate motors,
sensors, and other components.

• Portable Computer: With the addition of a battery, monitor, and keyboard,
the Raspberry Pi can be smoothly transformed into a portable computer.
This can be handy for people who desire a lightweight and inexpensive
computer for basic operations like web surfing, document editing, and pro-
gramming.

• Education: The Raspberry Pi was created to encourage computer science
education, and it continues to be a popular tool for teaching programming
and electronics. It can be used to teach basic programming ideas and more
complex topics like robotics, machine learning, and artificial intelligence.

• Network Traffic Analysis: The Raspberry Pi is capable of running a virtual
private network (VPN), performing security assessments, and monitoring
network traffic. It also can block unwanted traffic using software like Na-
gios, Zabbix, or Pi-hole, which can monitor network activities.

• Others: The Raspberry Pi is widely used as a versatile and affordable cam-
era and video recorder. It finds applications in various industries, research
endeavors, and specialized fields. Our research incorporated additional cir-
cuits into the robot and integrated the Raspberry Pi as a camera module to
capture diverse road images. The collected images are then sent to the con-
troller node for segmentation and analysis. Moreover, this device has found
utility in research, supporting areas such as farming and wildlife monitor-
ing, plant phenotyping, underwater video surveillance, electronic sensing
and control for studying animal behavior and physiology, bio-acoustics, au-
tonomous learning experiments, and environmental monitoring.

The functionality of the Raspberry Pi’s components is one of its main advantages.
Numerous input/output interfaces are available, including HDMI, USB, Ether-
net, Wi-Fi, Bluetooth, and GPIO pins. With the help of these interfaces, users
can attach a wide range of gadgets and add-ons to the Raspberry Pi, including

55

keyboards, mouse, sensors, cameras, and motors. The Raspberry Pi is a flexible
platform for several applications since it has an efficient processor and can run
several operating systems, including Linux and Windows 10.

5.3 Demonstration

The Raspberry Pi has become an enormously popular tool for makers, enthusiasts,
and professionals thanks to its combination of component functionality, power-
ful computing, and affordable cost. The Raspberry Pi offers the adaptability and
power to turn vision into reality, whether developing a home automation system,
a media center, or an autonomous car. The Raspberry Pi is likely to become an in-
creasingly crucial element in the field of electronics and computers as it develops
and gets better.

We describe the experimental setup and methodology used in our study to
evaluate the performance of the proposed model in the context of autonomous
driving. Our goal is to assess the effectiveness of the semantic segmentation
model deployed on an edge device (Raspberry Pi) for real-time object detection
and recognition.

The experimental environment consisted of several components, including a
router for creating a local network, a web camera for capturing images of the sur-
rounding environment, a system for monitoring and analyzing the results, and
the edge device (Raspberry Pi) where the proposed model is deployed. All these
components are interconnected using the Robot Operating System (ROS) frame-
work, facilitating communication and data exchange.

To conduct the experiments, we treat the web camera as one node in the ROS
graph, responsible for capturing images in real time. The deployed model is
also considered a node, subscribing to the images generated by the web camera
through a specific ROS topic. The proposed model then applied semantic segmen-
tation on the received images to identify and classify objects within the scene.

Additionally, our system, which acts as another node in the ROS graph, sub-
scribed to the results of the deployed model. This allows us to visualize and ana-
lyze the model’s output, assessing the accuracy and performance of the semantic
segmentation.

Throughout the experiments, we captured multiple videos of approximately
five minutes each, encompassing different driving scenarios on the Gandhinagar
city road. These videos served as input data for the semantic segmentation model,
enabling us to evaluate its performance in real-world driving conditions.

56

By deploying the model on the edge device and integrating it with the ROS
framework, we aim to build a robust and efficient autonomous system for ob-
ject detection and recognition. The experiment section presents the details of our
setup (figure:5.2), the data collection process, and the methodology followed to
assess the performance of the proposed model in the autonomous driving con-
text.

Figure 5.2: Illustrates the schematic diagram of ROS process for experiment setup.

Figure 5.3: Demonstrates the real-time experiment performed.

57

CHAPTER 6

Conclusions

In this research, we concentrated on the object identification and recognition mod-
ule within the context of the autonomous driving problem. We started with the
YOLO architecture, famed for its real-time object detection capabilities. However,
due to certain restrictions, we investigated alternate methods and discovered that
semantic segmentation provided accurate object boundaries with low latency and
high accuracy. We combined the Neural Architecture Search (NAS) technique
with reinforcement learning to create a powerful deep network. This network
was trained on a benchmarked cityscapes dataset and Berkeley dataset, allowing
it to perform effectively in real-time segmentation tasks.

We used an edge device, a powerful system, the ROS framework, and a camera
module to build a strong system. We have proved the usefulness of semantic seg-
mentation in the context of object identification and recognition for autonomous
driving in this study. The NAS-optimized deep network trained on the cityscapes
dataset outperformed other deep networks in real-time segmentation. We de-
signed a robust system capable of reliably identifying and recognizing objects in
real-world driving scenarios by employing edge computing and interacting with
the ROS framework.

This research sheds insight into using intelligent algorithms to solve real-world
difficulties in autonomous driving.

58

References

[1] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for se-
mantic segmentation," In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3431–3440, 2015.

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.
Y. Ng, et al., "ROS: an open-source robot operating system" In ICRA workshop
on open source software, vol. 3, pp. 1-5, Kobe, Japan, 2009.

[3] J. Fernandez, B. Allen, P. Thulasiraman, and B. Bingham, "Performance study
of the robot operating system 2 with qos and cyber security settings," In 2020
IEEE International Systems Conference (SysCon), pp. 1–6, 2020.

[4] N. Koenig and A. Howard, "Design and use paradigms for Gazebo: an open-
source multi-robot simulator," In 2004 IEEE/RSJ Interna tional Conference on
Intelligent Robots and Systems (IROS), vol. 3, pp. 2149–2154, 2004.

[5] R. B. Rusu and S. Cousins, "3D is here: Point cloud library (PCL)," In 2011
IEEE international conference on robotics and automation, pp. 1–4, 2011.

[6] I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, "A brief introduc-
tion to openCV," In 2012 proceedings of the 35th international convention MIPRO,
pp. 1725–1730, 2012.

[7] H. R. Kam, S.-H. Lee, T. Park, and C.-H. Kim, "RVIZ: a toolkit for real domain
data visualization," Telecommunication Systems, vol. 60, pp. 337–345, 2015.

[8] R. Girshick, "Fast R-CNN," In Proceedings of the IEEE international conference
on computer vision, pp. 1440–1448, 2015.

[9] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask R-CNN," In Proceedings
of the IEEE international conference on computer vision, pp. 2961–2969, 2017.

[10] J. Dai, K. He, and J. Sun, "Instance-aware semantic segmentation via multi-
task network cascades," In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3150–3158, 2016.

59

[11] Y. Zhou, Y. Zhu, Q. Ye, Q. Qiu, and J. Jiao, "Weakly supervised instance seg-
mentation using class peak response," In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3791–3800, 2018.

[12] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
"DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs," IEEE transactions on pattern
analysis and machine intelligence, vol. 40, no.4, pp. 834–848, 2017.

[13] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, "ENet: A deep neu-
ral network architecture for real-time semantic segmentation," arXiv preprint,
arXiv:1606.02147, 2016.

[14] A. Chaurasia and E. Culurciello, "LINKNet: Exploiting encoder represen
tations for efficient semantic segmentation," In 2017 IEEE visual communica-
tions and image processing (VCIP), pp. 1–4, 2017.

[15] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, "ICNET for real-time semantic seg-
mentation on high-resolution images," In Proceedings of the European confer-
ence on computer vision (ECCV), pp. 405–420, 2018.

[16] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and L. Fei-Fei,
"Auto-deeplab: Hierarchical neural architecture search for semantic image
segmentation," In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 82–92, 2019.

[17] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, "Efficient neural architecture
search via parameters sharing," In International conference on machine learning,
pp. 4095–4104, 2018.

[18] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,
J. Huang, and K. Murphy, "Progressive neural architecture search," In Pro-
ceedings of the European conference on computer vision (ECCV), pp. 19–34, 2018.

[19] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once:
Unified, real-time object detection," In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 779–788, 2016.

[20] J. Redmon and A. Farhadi, "YoLo9000: better, faster, stronger," In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271,
2017.

60

[21] J. Redmon and A. Farhadi, "YoLov3: An incremental improvement," arXiv
preprint arXiv:1804.02767, 2018.

[22] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, "Yolov4: Optimal speed and
accuracy of object detection," arXiv preprint, arXiv:2004.10934, 2020.

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, and L. Antiga, "Pytorch: An imperative style, high-
performance deep learning library," Advances in neural information processing
systems, pp. 32, 2019.

[24] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for
accurate object detection and semantic segmentation," In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 580–587, 2014.

[25] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, "A review of YoLo algorithm
developments," Procedia Computer Science, vol. 199, pp. 1066–1073, 2022.

[26] C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh,
"CSPNet: A new backbone that can enhance learning capability of CNN," In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
workshops, pp. 390–391, 2020.

[27] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, "Path aggregation network for instance
segmentation," In Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp. 8759–8768, 2018.

[28] J. Hosang, R. Benenson, and B. Schiele, "Learning non-maximum suppres-
sion," In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 4507–4515, 2017.

[29] M. Cordts, M. Omran, S. Ramos, T. Scharwächter, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, "The cityscapes dataset," In CVPR Workshop
on the Future of Datasets in Vision, vol. 2, 2015.

[30] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U.
Franke, S. Roth, and B. Schiele, "The cityscapes dataset for semantic urban
scene understanding," In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3213–3223, 2016.

[31] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, "Microsoft coco: Common objects in context," In Computer Vi-

61

sion–ECCV 2014: 13th European Conference, Zurich, Switzerland, pp. 740–755,
2014.

[32] W. Chen, X. Gong, X. Liu, Q. Zhang, Y. Li, and Z. Wang, "Fasterseg: Searching
for faster real-time semantic segmentation," arXiv preprint, arXiv:1912.10917,
2019.

[33] T. Elsken, J. H. Metzen, and F. Hutter, "Neural architecture search: A survey,"
The Journal of Machine Learning Research, vol. 20, no. 1, pp. 1997–2017, 2019.

[34] J. Gou, B. Yu, S. J. Maybank, and D. Tao, "Knowledge distillation: A survey,"
International Journal of Computer Vision, vol. 129, pp. 1789–1819, 2021.

[35] A.-C. Cheng, C. H. Lin, D.-C. Juan, W. Wei, and M. Sun, "Instanas:Instance-
aware neural architecture search," In Proceedings of the AAAI conference on ar-
tificial intelligence, vol. 34, pp. 3577–3584, 2020.

[36] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, "Bisenet: Bilateral seg-
mentation network for real-time semantic segmentation," In Proceedings of the
European conference on computer vision (ECCV), pp. 325–341, 2018.

[37] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, "Mo-
bilenetv2: Inverted residuals and linear bottlenecks," In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 4510–4520, 2018.

[38] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, "Encoderde-
coder with atrous separable convolution for semantic image segmenta-
tion," In Proceedings of the European conference on computer vision (ECCV), pp.
801–818, 2018.

[39] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, "Slimmable neural networks,"
arXiv preprint, arXiv:1812.08928, 2018.

[40] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J. Liu, and
D. Marculescu, "Single-path NAS: Designing hardware-efficient convnets in
less than 4 hours," In Machine Learning and Knowledge Discovery in Databases:
European Conference, Würzburg, Germany, pp. 481–497, 2020.

[41] Y. Zhang, Z. Qiu, J. Liu, T. Yao, D. Liu, and T. Mei, "Customizable architecture
search for semantic segmentation," In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11641–11650, 2019.

62

[42] A. Shaw, D. Hunter, F. Landola, and S. Sidhu, "Squeezenas: Fast neural
architecture search for faster semantic segmentation," In Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshops, pp. 1–11,
2019.

63

	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	About an Artificial Intelligent System
	Semantic Segmentation and Challenges
	Application of Semantic Segmentation
	Semantic Segmentation for Autonomous Driving

	Literature Survey
	Robot Operating System (ROS)
	Use of ROS
	ROS Computation Graph Model
	Nodes
	Master
	Topics
	Services
	Parameter Server

	Libraries and Tools
	Gazebo Simulator
	Point Cloud Library
	OpenCV
	ROS Bag
	Rviz
	Catkin
	ROS bash
	ROS launch
	ROS Versions

	Object Detection Model

	YOLO Architecture
	Introduction
	Versions
	YOLOv1
	YOLOv2
	YOLOv3
	YOLOv4

	Architecture
	Dataset
	Berkeley Dataset
	Labelling Tool
	Cityscapes Dataset
	Our Dataset

	Verification of YOLO Model
	Mode Variants
	Training
	Results

	Limitation

	Semantic Segmentation
	Neural Architecture Search
	Teacher/Student Co-searching For Knowledge Distillation
	FasterSeg
	Optimizing Search Space for Efficient Multi-Resolution Branching
	Searchable Multi-Resolution Branches
	Selecting Optimal Operators for Enhanced Receptive Field Coverage
	Searchable Super kernel For Expansion Ratios

	Regularized Latency Optimization with Finer Granularity
	Verifications
	Architecture Search
	Exploring the Effectiveness of Multi-Resolution Search Space and Collaborative Search
	Results

	Real-Time Experiments
	Edge Device
	Use Cases
	Demonstration

	Conclusions
	References

