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Abstract

Vocal communication plays a fundamental role in human interaction and expres-
sion. Right from the first cry to adult speech, the signal conveys information about
the well-being of the individual. Lack of coordination between the speech muscles
and the brain leads to voice pathologies. Some pathologies related to infants are
Asphyxia, Sudden Death Syndrome (SIDS), etc. The other voice pathologies that
affect the speech production systems are dysarthria, cerebral palsy, and parkin-
son’s disease.

Dysarthria, a neurological motor speech disorder, is characterized by impaired
speech intelligibility that can vary across severity-levels. This works focuses on
exploring the importance of Modified Group Delay Cepstral Coefficients (MDGCC)-
based features in capturing the distinctive acoustic characteristics associated with
dysarthric severity-level classification, particularly for irregularities in speech.
Convolutional Neural Network (CNN) and traditional Gaussian Mixture Model
(GMM) are used as the classification models in this study. MGDCC is compared
with state-of-the-art magnitude-based features, namely, Mel Frequency Cepstral
Coefficients (MFCC) and Linear Frequency Cepstral Coefficients (LFCC). In ad-
dition, this work also analyzed the noise robustness of MGDCC. To that effect,
experiments were performed on various noise types and SNR levels, where the
phenomenal performance of MGDCC over other feature sets was reported. Fur-
ther, this study also analyses the cross-database scenarios for dysarthric severity-
level classification. Analysis of Voice onset Time (VOT) and experiments were
performed using MGDCC to detect dysarthric speech against normal speech. Fur-
ther, the performance of MGDCC was then compared with baseline features us-
ing precision, recall, and F-1 score and finally, the latency period was analysed for
practical deployment of the system.

This work also explores the application of phase-based features on the emo-
tion recognition task and pop noise detection. As technological advancements
progress, dependence on machines is inevitable. Therefore, to facilitate effective
interaction between humans and machines, it has become crucial to develop pro-
ficient techniques for Speech Emotion Recognition (SER). The MGDCC feature
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set is compared against MFCC and LFCC features using a CNN classifier and the
Leave One Speaker Out technique. Furthermore, due to the ability of MGDCC
to capture the information in low-frequency regions and due to the fact that pop
noise occurs at lower frequencies, the application of phase-based features on voice
liveness detection is performed. The results are obtained from a CNN classifier
using the 5-Fold cross-validation metric and are compared against MFCC and
LFCC feature sets.

This work proposed the time averaging-based features in order to understand
the amount of information being captured across the temporal axis as there would
not be many temporal variations in a cry signal. The research conducted in this
study utilizes a 10-fold stratified cross-validation approach with machine learn-
ing classifiers, specifically Support Vector Machine (SVM), K-Nearest Neighbor
(KNN), and Random Forest (RF). This work also showcased CQT-based Constant-
Q Harmonic coefficient (CQHC) and Constant-Q Pitch coefficients (CQPC) for the
classification of infant cry into normal and pathology as an effective representa-
tion of the spectral and pitch components of a spectrum together is not achieved
leaving scope for improvement. The results are compared by considering the
MFCC, LFCC, and CQCC feature sets as the baseline features using machine
learning and deep learning classifiers, such as Convolutional Neural Networks
(CNN), Gaussian Mixture Models (GMM), and Support Vector Machines (SVM)
with 5-Fold cross-validation accuracy as the metric.
Keywords: Infant Cry Analysis, Dysarthria Severity-Level Classification, Emotion
Recognition, Voice Liveness Detection, Constant-Q Harmonic Coefficients, Modified
Group Delay Function, Noise Robustness.
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CHAPTER 1

Introduction

Speech is a fundamental mode of human communication that conveys informa-
tion, emotions, and intentions. Understanding and analyzing speech signals have
significant implications across various fields, including healthcare, communica-
tion disorders, affective computing, and biometrics. Speech serves as a vital indi-
cator of an individual’s well-being, and accurate classification of infant cries plays
a crucial role in early childhood healthcare. When it comes to infants, the cry is the
only means of communication [26]. Similarly, generating speech requires coordi-
nation between the brain and speech production muscles. Lack of coordination
results in speech impairments. These speech impairments might be neurogen-
erative and neurodegenerative [45]. Dysarthria is one such common speech im-
pairment that results in difficulty in speech generation. Furthermore, due to the
recent advances in computational ability, voice biometrics are used widely, which
also resulted in various spoofing techniques; which in turn motivated the genera-
tion of counter-measurement techniques. Additionally, due to these technological
advances, dependence on machines is inevitable. Therefore, to facilitate effective
interaction between humans and machines, it has become crucial to develop pro-
ficient techniques for Speech Emotion Recognition (SER).

1.1 Motivation

Dysarthria is a motor speech disorder resulting from various underlying condi-
tions, such as stroke, traumatic brain injury, Parkinson’s disease, or Amyotrophic
lateral sclerosis (ALS) [78]. These speech impairments occur as developmental
disorders. The inability to reproduce speech causes difficulties for an individual
to have effortless communication [6]. This causes individuals to struggle to main-
tain social relationships and may get prone to mental diseases, such as depression
in the later stages. Different types of dysarthria may require specific therapeutic
interventions to address the underlying causes and symptoms. Subjective assess-
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ment of each individual by a trained speech pathologist can be very expensive and
inconsistent. This leads the way to introduce automated dysarthria severity-level
classification. By the ability to classify dysarthria into distinct types, clinicians can
develop targeted treatment plans that are tailored to the specific needs and chal-
lenges of each individual. This personalized approach increases the likelihood
of achieving favourable treatment outcomes and improving communication abil-
ities. Additionally, the automated dysarthric classification helps the diagnosis
of the areas, which are economically backward and harder to reach for medical
professionals. Moreover, the speech production of a dysarthric speaker is signifi-
cantly different from that of a normal speaker. Due to this, there are a very limited
number of assistive technologies for dysarthric speakers. The dysarthria severity-
level classification significantly improves the performance of Automatic Speech
Recognition (ASR) systems [39].

Another area of problem, where the subject needs careful and proper diagno-
sis is for an infant cry. For an infant, crying is the only mode through which they
can communicate or convey information. However, a cry of an infant can mean
many things, it can be a normal cry or a pathological cry. Studies have shown that
around 3 million infants die within the first 4 months of birth due to lack of early
diagnosis of the disease [3]. Birth asphyxia and sudden infant death syndrome
(SIDS) are the leading causes of death for infants [48]. Furthermore, the clinical
diagnosis of asphyxia is logistically heavy and time taking and inaccurate some-
times [20]. The acoustic cues of deaf infant cry depend on the type of hearing loss
and the age of the pathology detection [61]. However, not every infant is privi-
leged that they get taken care by a group of good paediatricians and receive an
early diagnosis. Hence, this encourages the development of an automated infant
cry classification system.

In recent times, speech is extensively being used for bio-metric systems, which
are linked to social and security [34]. However, the recent advancements in com-
putational systems increase the risk of spoofing attacks on the detection biomet-
ric systems [34]. The spoofing attacks occur when an imposter tries to mask as
the genuine speaker and access the system. There are many types of spoofing
attacks, such as voice conversion systems, synthesizing the original speaker’s
speech, mimicry, etc [94]. However, among all the attacks, the replay attacks
are the most frequently used attack. To that effect, pop noise detection is used
as a countermeasure system for the detection of voice liveness. This work pro-
poses a new set of features to improve the performance of the pop noise detection
system. Furthermore, the recent advances in technology resulted in a huge de-
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pendency on technology. Speech Emotion Recognition (SER) is a key factor in
human-computer interaction. By incorporating emotion recognition capabilities
into interactive systems, such as virtual assistants, chatbots, and video games, we
can create more personalized and responsive user experiences. Emotion-aware
systems can adapt their behaviour, responses, and content to better align with
users’ emotional states, enhancing user satisfaction and engagement. This can
lead to improved user experiences and increased usability of technology in vari-
ous domains.

1.2 Research Problems

1.2.1 Dysarthric Speech Classification

Dysarthria is a disorder represented by difficulties in articulating and pronounc-
ing words due to weak, imprecise, or uncoordinated muscles involved during
speech production. It is caused by damage or dysfunction in the central or pe-
ripheral nervous system, affecting the muscles responsible for speech production,
such as the lips, tongue, vocal folds, and diaphragm. Dysarthria can result from
various conditions, including stroke, traumatic brain injury, Parkinson’s disease,
multiple sclerosis, and certain genetic disorders [24]. Individuals with dysarthria
often experience challenges in speaking clearly and intelligibly. Their speech may
be slurred, slow, monotonous, or excessively fast, making it difficult for others to
understand. Articulation, resonance, phonation, and prosody can all be affected
by dysarthria, leading to reduced speech clarity and intelligibility. These diffi-
culties can significantly impact an individual’s ability to communicate effectively,
affecting their personal relationships, social interactions, and overall quality of
life. The usual symptoms of dysarthric speech are [46]:

1. Articulation difficulties

2. Reduced speech intelligibility

3. Impaired prosody

4. Resonance abnormalities

5. Weak voice and less loudness

6. Swallowing difficulties

3



Dysarthria can be classified into various types depending on the neuromuscular
impairment and the area of the speech production system affected. The various
types of dysarthria are:

Flaccid Dysarthria

Flaccid dysarthria occurs when there is weakness or paralysis of the muscles in-
volved in speech production. It can be caused by damage to the cranial nerves
or the motor neurons in the peripheral nervous system [44]. Symptoms include
breathy or hoarse voice quality, imprecise articulation, and reduced loudness. It
affects the phonation and respiration of an individual’s voice. This results in mis-
pronunciations of consonants.

Spastic Dysarthria

This type of dysarthria is characterized by increased muscle tone and spasticity in
the muscles involved in speech production. It can result in slow, effortful speech
with strained and tight-sounding articulation due to improper opening and clos-
ing of the mouth [100]. Individuals with spastic dysarthria may have difficulty
initiating and controlling movements, such as abnormal jaw jerks and facial re-
flexes.

Ataxic Dysarthria

Ataxic dysarthria is characterized by problems with coordination and control of
movements. It is a result of the damage to the core part of the brain that reg-
ulates sensory information [38]. Individuals with ataxic dysarthria may exhibit
irregular, uncoordinated speech movements, leading to distortion of vowels and
consonants.

Hypokinetic Dysarthria

Hypokinetic dysarthria is associated with movement disorders, such as Parkin-
son’s disease. It is characterized by reduced movement, muscle rigidity, and
tremors [19]. Speech in hypokinetic dysarthria may be characterized by reduced
loudness, monotone or "masked" voice quality, and rapid, repetitive speech pat-
terns. This results in reduced variations of the pitch and loudness.

4



Hyperkinetic Dysarthria

Hyperkinetic dysarthria is characterized by involuntary movements that affect
speech production. It can result from conditions, such as Huntington’s disease
or certain types of tremors [19]. Symptoms may include excessive or irregular
movements of the lips, jaw, tongue, or vocal folds, leading to variable speech
intelligibility and control.

Mixed Dysarthria

Mixed dysarthria refers to a combination of dysarthria types. It can occur when
multiple areas of the speech production system are affected, such as in cases of
neurodegenerative diseases or severe brain injuries [19]. The specific symptoms
and characteristics of mixed dysarthria depend on the combination of underlying
impairments.

The task of identification of the dysarthric type is performed by pathology
experts. Each disorder lies from very low severity to a high severity-level [88].
The analysis of severity or the intelligibility of speech is difficult and might lead
to human errors. The severity is determined by the extent of muscle weakness,
the degree of impairment in speech intelligibility, and the impact on daily com-
munication activities. Evaluating the severity of dysarthria assists clinicians in
developing personalized treatment plans, setting realistic goals, and monitoring
progress over time.

1.2.2 Speech Emotion Recognition (SER)

The scientific definition of emotion remains elusive, lacking universal acceptance.
It refers to powerful sensations like love or anger, encompassing feelings in gen-
eral. Emotion is a mental state triggered by neuro-physiological changes, influ-
encing thoughts, feelings, and behaviors. It involves consciousness, bodily sen-
sations, and behaviour, reflecting personal significance. Emotion distinguishes
humans from robots and is vital for meaningful human-machine interaction. Re-
searchers classify emotion using four dimensions: duration, quality, intensity,
and pleasure. Emotion recognition focuses on identifying emotions, particularly
through speech. Speech production involves cognitive processes and physio-
logical aspects of communication. Emotion recognition involves observing vi-
sual and auditory cues. This thesis focuses exclusively on analyzing emotions
through speech. The gap between human and machine processing hampers ac-
curate identification of a speaker’s emotional state. Speech Emotion Recognition
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(SER) emerges as a new research field. Effective models depend on understanding
the acoustics of various emotions.

1.2.3 Voice Liveness Detection (VLD)

Biometrics refers to the measurement and analysis of unique physical or behavioural
traits for identification or authentication purposes. There are various ways of
conducting biometric verification. A few of them are face verification [28], iris
verification [81], and voice verification [73]. In the realm of biometrics, speech has
gained significant attention due to its inherent individuality and the availability of
voice-based technologies [34]. Voice liveness, specifically, has emerged as a critical
aspect of voice-based biometric systems to ensure the authenticity and security of
the captured voice samples. However, with the advancement in technology, the
attacks have also increased in numbers. These attacks are known as spoofing at-
tacks. The aim of voice liveness detection is to prevent spoofing attacks, where
impostors may attempt to deceive voice-based authentication systems by using
prerecorded or synthesized speech. By verifying the liveness of a voice sample,
the system can establish the presence of a live human speaker, thus enhancing the
security and reliability of voice-based biometric applications [77]. For the same
purpose, Automatic Speaker Verification (ASV) systems are designed, which are
used to verify specific properties, such as vocal tract system characteristics, pitch
features, etc [57]. Some of the attacks performed on the ASV systems are mimicry
attacks [30], speech synthesizing [43], conversion of voice [99], and replay attacks
[66]. One common attack in replay attacks is recording the original speaker’s
voice and attempting to fool the verification system. One commonly encountered
challenge in voice liveness detection is the absence of "pop noise" in the recorded
speech samples. Pop noise refers to the sudden, brief burst of sound at lower fre-
quencies. By detecting and analyzing the presence and characteristics of pop noise
in a voice sample, these methods can contribute to the accurate identification of
live human speech and the differentiation from synthetic or recorded speech.

1.2.4 Infant Cry Classification

The cry of an infant is a universal language for newborns to convey information.
The crying of an infant is a vital and only tool to express their needs, discomforts,
and their emotional states [26]. Hence, the cry can be a normal cry or a pathol-
ogy cry [26]. It becomes difficult for a parent or caretaker to identify if a cry is
normal or pathological. Furthermore, the analysis of infant cry holds significant
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importance in the early detection and monitoring of certain health conditions or
developmental issues. Research has shown that variations in cry acoustics can be
indicative of underlying pathologies, such as hearing impairments, neurological
disorders, or feeding difficulties. By classifying and analyzing cry signals, health-
care professionals can identify potential problems early on and provide timely
interventions and support, optimizing the infant’s health and development.

1.3 Social Relevance

Infant cry analysis is a method of automated cry analysis that may assist doc-
tors in the diagnosis of a disease. The social relevance of this research lies in the
potential to improve the early detection and diagnosis of health conditions or ab-
normalities in infants. By accurately classifying cries, healthcare professionals can
identify infants, who may require further medical attention or intervention. This
early detection can lead to timely treatment, potentially improving outcomes and
reducing the impact of certain conditions on the child’s development. The ex-
periment has the potential to contribute to the field of pediatric healthcare and
enhance the well-being of infants. The practical application of an automated in-
fant cry classifier is through the following ways:

1. Understanding the cry: Correctly identifying the reason behind the cry
helps to reduce parental stress, while providing the accurate treatment or
care necessary.

2. Developing medical assistive tools: Automated detection might help in
accurately detecting the type of pathology cry. This reduces the chance of
delayed treatment in the early stages of diagnosis.

Dysarthria refers to a motor speech disorder that affects the clarity and intelligi-
bility of speech. The experiment aims to classify dysarthria severity-levels. The
social relevance of this experiment lies in the potential to improve communica-
tion and quality of life for individuals with dysarthria. Accurate classification of
severity-levels can assist in personalized treatment planning and speech detec-
tion systems. It can help speech-language pathologists plan therapy approaches
to meet individual needs. By understanding the severity of dysarthria, appropri-
ate accommodations, and support can be provided to individuals in various social
contexts, such as education, employment, and social interactions.

1. Improving the performance of ASR systems: The proper classification of
dysarthric severity-level helps to improve the ASR system performance by a
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large margin. The lack of ASR systems for dysarthric speakers is a very prac-
tical problem. For instance, individuals with severe dysarthria may require
devices with robust prediction algorithms or text-to-speech capabilities to
enhance their communication abilities.

2. Dysarthric speech enhancement: Dysarthria severity classification provides
insights into the specific speech characteristics and patterns associated with
different severity-levels. By understanding these patterns, researchers can
develop algorithms or models tailored to enhance speech intelligibility for
each severity category. For example, algorithms may focus on reducing
vowel distortions, increasing pitch variability, or addressing articulation er-
rors based on the severity-level identified. This work proposes one such
feature, phase-based features which can play a crucial role in speech en-
hancement by using the concept of signal reconstruction.

1.4 Contributions of This Thesis

A novel work has been showcased by applying group delay function-based phase
features for the dysarthric severity-level classification task.

• Phase-Based Features: The thesis investigates the use of phase-based fea-
tures for dysarthria severity-level classification. By analyzing the phase in-
formation of speech signals, these features capture the irregularities intro-
duced due to the speech disorder. These irregularities are generated due to
an increase in production noise, and turbulence in dysarthric speech. It is
observed that these are better captured using phase-based features.

• Noise Robustness of Phase-Based Features: The thesis investigates the noise
robustness of phase-based features. The noise robustness is a very practi-
cal problem that is not addressed for the severity-level classification task.
By evaluating the performance of these features under various noisy condi-
tions, the thesis provides insights into their effectiveness in real-world envi-
ronments and their potential for robust speech analysis.

Along with the dysarthria severity classification, given the numerous challenges
in infant cry research, an attempt is made to develop an automated infant cry
classification system. This is done by proposing the following novel techniques:

• Time Averaging of Features: The thesis introduces the concept of time-
averaging features for infant cry classification. This novel approach helps
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capture variations in infant cries from the spectral-axis alone and shows that
the temporal-axis contains the minimum to no information for the cry, pro-
viding valuable information for distinguishing between different cry types.
These features help to achieve maximum classification accuracy using less
computationally complex machine learning classifiers.

• CQHC and CQPC: The thesis explores the use of Constant Q-based harmonic
and pitch coefficients as features for infant cry classification by considering
the cry signal as a melodic signal. These coefficients capture the fundamen-
tal frequency (F0) and harmonic structure (KF0, K ∈ Z) of the cry, enabling
the discrimination of different cry characteristics related to the infant’s needs
or discomfort. This showcased the importance of the pitch component for
the infant cry classification.

1.5 Organization of Thesis

Fig 1.1 shows the organization of the thesis work as a schematic diagram, which
is briefly discussed next:

Figure 1.1: Overview of the Organization of Thesis.
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• Chapter 2 presents a detailed study of the previous investigations for in-
fant cry classification, dysarthria severity-level classification, speech emo-
tion recognition, and voice liveness detection. Various methods based on
signal processing and deep learning networks on available databases are
also discussed.

• Chapter 3 shows the details of the datasets used in this thesis work, the
classifiers used, the baseline features, and the performance metrics for eval-
uating the models.

• Chapter 4 presents a detailed explanation of the Fourier transform-based
phase features. This is followed by the introduction of group delay function-
based features followed by its drawbacks. Later in the chapter, the modified
group delay function is explained.

• Chapter 5 presents the novel approach based on dysarthria severity-level
classification using a modified group delay function.

• Chapter 6 presents the analytical proof of additive noise robust property
of group delay features-based function. The analytical explanation is sup-
ported by the experimental results performed on dysarthric severity-level
classification.

• Chapter 7 and Chapter 8 shows the application of phase-based features for
the emotion recognition task, where the analysis is performed using the
Leave One Speaker Out technique. Chapter 8 shows the use of phase-based
features on voice liveness detection (i.e., using pop noise detection).

• Chapter 9 discusses the benefits of averaging features across the time for the
infant cry classification. The study has shown that the infant cry signal does
not contain much temporal information resulting in the minimal loss, while
decreasing the computational cost of the classifiers by a large amount.

• Chapter 10 proposes a new set of features for infant cry classification, namely,
Constant Q Harmonic Coefficients (CQHC) and Constant-Q Pitch Coeffi-
cients (CQPC), which are based on the Constant Q Transform (CQT).

• Chapter 11 concludes the research with an overview of the work completed
within the scope of the thesis. Later, the chapter showcases the limitations
and future scope of this work.
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1.6 Chapter Summary

This chapter gives a brief introduction to infant cry, dysarthria, speech emotion
recognition, and voice liveness detection as the problem statements. Later in the
chapter, the motivation for this thesis work is explained followed by the social
relevance and the contributions of this thesis work. The chapter is concluded by
representing the organization of the thesis. In the next chapter, we will see the
background and literature on the mentioned problem statements.
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CHAPTER 2

Literature Survey

2.1 Introduction

In this chapter, we discuss the literature review of a few studies that have been
made in the past for infant cry classification, dysarthric severity-level classifica-
tion, speech emotion recognition, and voice liveness detection. The chapter starts
with infant cry analysis, classification and recent trends followed by dysarthria
classification. This chapter also discusses the recent advancements in emotion
recognition and finally, discusses voice liveness detection system developments.

2.2 Analysis of Dysarthric Speech

The subject assessment of dysarthric speech requires a diagnosis assessment from
Speech Language Pathologist (SLP). The analysis of SLP focuses on the articula-
tion and acoustic parameters of speech signals. There are 4 major methods widely
used by SLPs for the assessment of dysarthric speech.

• Assessment of Intelligibility of Dysarthric Speech (AIDS): This method
considers the speaking and intelligibility of the speaker. This assessment
is performed for speakers above 12 years old. The speech is recorded by
the examiner and then played against the panel of judges which rates the
speaker on the basis of the intelligibility level of words and sentences [97].

• Speech Intelligibility Test (SIT): It is an electronic form of AIDS introduced
in [15]. It provides the score to the examiner. The scoring metrics is the same
as the AIDS.

• Frenchay Dysarthric Assessment (FDA): This determines the kind of dysarthria
a patient is suffering from [18]. It takes various factors, such as respirations,
muscle reflexes, and movement of the jaw, tongue, lips e.t.c into considera-
tion.
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• Dysarthria Profile: This method takes the facial muscle moments into con-
sideration. The analysis is performed by 1 clinical expert, 1 familiar and 1
unfamiliar listener. This provides a more robust assessment of dysarthric
speech [74].

In the literature, the classification of dysarthric speech intelligibility has been ap-
proached through two main methods: speech recognition-based techniques and
human supervision intelligibility assessment. Various studies have explored dif-
ferent approaches to address this issue. In another study conducted by [36], Mel
Frequency Cepstral Coefficients (MFCC) are employed. MFCCs are chosen for
their ability to capture the "global" spectral envelope properties, which are rele-
vant in perceptually-motivated audio classification tasks. Additionally, [27] in-
vestigate glottal source parameters obtained from a quasi-periodic sampling of
vocal tract systems. This approach aims to extract information about the glot-
tal source and its characteristics in dysarthric speech. Moreover, [59] highlight
the significance of vocal fold vibration differences or irregularities in dysarthric
speech production. They emphasize that these differences cannot be solely char-
acterized by the rate of vibration (i.e., pitch source information), but also by the
mode of vibration of the vocal folds.

The traditional magnitude spectral and cepstral features have been used for
the classification of the severity-level of dysarthria. In [40], the study shows that
measures obtained from fundamental or pitch frequency (F0) and the second for-
mant frequency (F2) are highly correlated with the intelligibility of dysarthria.
The MFCC showed the ability for speech pathology classification more so for
dysarthric speech [6]. In [21], MFCCs are encoded using a deep belief network
and used for dysarthria classification using Multi-Layer Perceptron (MLP). Fur-
thermore, the combination of MFCC with auditory features resulted in better re-
sults. Later, Linear Frequency Cepstral Coefficients (LFCC) are used to observe
the information captured through the linear frequency scale. In [37], LFCC fea-
tures are used to capture the speech intelligibility of dysarthric speech.

Apart from magnitude spectrum-based features, recent studies showed the
importance of phase-based features to improve the performance of speech sys-
tems. In [31], the Fourier transform phase-based features are explored for speech
and speaker recognition [72], speaker verification in [89], and voice pathology
detection [42].
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Table 2.1: Available Datasets for Dysarthria Classification Task. After [98], [79],
[60].

Database Speaker Male/Female Data
TORGO Database 7 4/3 Words, Sentences

UA-Speech 19 15/4 Words
HomeService 5 3/2 Voice Commands

2.3 Analysis of Emotions of Speech

Initial work on emotion recognition was carried out in late 1999, where Nakatsu
R, Tosa N proposed an algorithm for emotion recognition using neural networks.
The accuracy obtained was about 50 % [58]. This was then extended by other
researchers and now we have multiple emotion recognition features, algorithms,
and also datasets are available in various languages [86]. Powerful neural net-
work algorithms are being used to test emotion recognition and accuracy rates
have increased ever since [85]. Cognitive features in emotion recognition was also
analyzed side-by-side by researchers as their correlation with emotions was found
long back [80], [90]. There are three types of emotion databases, namely acted,
elicited, and simulated emotions [41], [5]. Acted emotions refer to emotions that are
deliberately portrayed or acted out by individuals, Elicited emotions are emotions
that are intentionally triggered or evoked in individuals through various means.
This can be done through external stimuli, such as emotional pictures, videos,
or stories, or through interpersonal interactions or specific situations designed to
elicit certain emotional responses and Natural emotions refer to genuine, spon-
taneous emotional experiences that occur in everyday life situations without any
deliberate manipulation or elicitation [85]. The database used in this thesis is
of acted emotions. Various features are employed for this purpose [17], but the
major four categories are developed, namely, prosodic, excitation source-based,
vocal tract-based, and a combination of the aforementioned features. Prosodic
features refer to the suprasegmental aspects of speech that go beyond individ-
ual phonemes or words. They involve the rhythm, stress, intonation, and pitch
patterns used in spoken language. Prosody plays a crucial role in conveying
meaning, emphasis, and emotional expression in communication. Traditional ma-
chine learning models, such as Gaussian Mixture Model (GMM), Hidden Markov
Model (HMM), K Nearest Neighbour (KNN), Bayes classifier, Support Vector Ma-
chine (SVM), random forest, etc were used initially. With the development of
Artificial Intelligence (AI) and the emergence of Deep Learning (DL), SER classi-
fications were also shifted to deep learning models. Their ability to automatically
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learn complex features, handle large amounts of data, model non-linear relation-
ships, and adapt to diverse tasks and domains make deep learning an increas-
ingly popular and powerful approach in the field of SER. The most commonly
used DL models are, Convolutional Neural network (CNN), Recurrent Neural
network (RNN), Time Delay Neural Network (TDNN), Long Short Term Memory
(LSTM), Residual Neural Network (ResNet), etc

2.4 Voice Liveness Detection

The voice liveness detection in this work is based on Pop Noise detection. The
occurrence of pop noise is a natural phenomenon that happens due to bursts
of airflow coming through the mouth [70]. There is an inverse relationship be-
tween the distance of the speaker and microphone to the energy of pop noise.
This relation is used to detect if the speech is genuine or spoofed generated by a
replay attack. Voice liveness detection was first proposed in [83], [84]. These stud-
ies showcased low-frequency single-channel detection and subtraction-based pop
noise detection using 2 channels. In [51], the authors introduced phoneme-based
pop noise detection for VLD systems where the duration of pop noise is observed
for phonemes. This work classifies the phonemes into 2 categories: Hard and Easy
pop noise, respectively. A similar phoneme-based study using Gamma-Tone Cep-
stral Coefficients (GFCC) was studied in [91]. In [83], the database is proposed
pop noise using 3 different microphones. The microphones contain pop noise
and no pop noise filters to create a balance in the datasets. The pop noise also
gets affected when different kinds of microphones are used. A database named
POCO [2] was made available to improve the research in this area. Various works
[52], [2] used this dataset and STFT-based features using Deep Neural Networks
(DNN), Gaussian Mixture Models (GMM), Support Vector Machine (SVM), and
Convolutional Neural Network (CNN) classifiers.

2.5 Analysis of Infant Cry Analysis

The initial works on infant cry analysis started as early as the years of 1960s. The
studies performed analysis on 4 pathology cries: pain, hunger, birth, and plea-
sure [92]. Later, the analysis of cry using a narrow-band spectrogram was started
by Q.Xie. et al, in the year 1996 [95]. This work explored 10 different modes
of infant cry and studied the pitch and harmonic variations of the infant cry. A
new parameter called the H-value is discovered which is found to have a cor-
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relation with parent’s assessment of infant suffering. In extension to this work,
[32] showcased the infant cry analysis on pathological cries. It was noticed that
dysphonation and hyper phonation are correlated with the pathology cry modes.
Due to recent advancements in technologies and trends, various computer algo-
rithms are employed to analyze the infant cry signal resulting in rapid interpreta-
tion and development of analysis tools. The Mel Frequency Cepstral Coefficients
(MFCC) which are initially proposed for Western music, have been extensively
used for the infant cry classification. The use case of MFCC features for the infant
cry classification is proposed in [49], [64]. Later, the effect of the linear filterbank
on the infant cry classification was also observed in the studies by using Linear
Frequency Cepstral Coefficients (LFCC) features [13], [14]. However, MFCC and
LFCC features which are extracted using STFT have fixed resolution in the time-
frequency plane. In addition, it fails to preserve form-invariance property, as the
analysis window used in STFT is a function of only time parameter. Hence, study
in [65] report the application of CQT-based cepstral features for infant cry classi-
fication.

Research in the classification of cry as normal vs. pathological has been a re-
cent emerging problem due to its social relevance. The introduction of machine
learning and deep learning methods made the automated infant cry classification
and analysis faster and more accurate. In [10], the work using Support Vector
Machines for classification of normal vs. pathological infant cries is reported. The
Gaussian Mixture Models (GMM) are also used as classifiers for infant cry clas-
sification in [3],[35]. Sudy in [25] shows the application of feed-forward neural
networks. Additionally, apart from the traditional classifiers, reports of infant
cry classification using acoustic and prosodic features on deep learning architec-
tures, such as CNN, LSTM, and RNN are also proposed. Finally, it is observed
that melodic intervals in infant cries are a regular phenomenon indicating it is a
healthy cry.

Table 2.2: Available Datasets for Infant Cry Classification Task.
Database Creator Recording Source

Baby Chillanto NIAOE-CONACYT, Mexico 2268 [75]
Donate a cry github.com/donateacry 457 [82]
Chatter Baby chatterbaby.org 1071 [62]

SPLANN SPLANN Study 13373 [87]
DA-IICT DAIICT 1190 [11]
ICOPE infantcope.com 113 [23]
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2.6 Chapter Summary

In this chapter, we discussed the attempts made for analyzing and identifying
the infant cry, dysarthria, emotion recognition, and voice liveness detection using
signal processing techniques with various machine learning and deep learning
classifiers. We also analysed different clinical methods for the proposed problem
statements. The next chapter discusses the experimental setup followed for this
thesis.
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CHAPTER 3

Experimental Setup

3.1 Introduction

This chapter describes the experimental setup and the datasets used for dysarthria
severity-level classification, infant cry classification, speech emotion recognition,
and voice liveness detection. The experimental setup includes the datasets used,
classifiers and the statistical metrics used to evaluate this work.

3.2 Database Details

3.2.1 Dysarthria Severity-Level Classification

The severity-level classification is performed on Universal Access Speech Corpus
(UA Corpus). The data of 8 speakers (4 male, namely, M01 M05, M07, M09, and
4 female, F02 F03, F04, and F05) are used which can be seen from Table 3.1. From
the total of 765-word utterances, a subset of 465 utterances are considered for the
feature extraction as mentioned in [29]. Each severity class consists of 936, 920,
936, and 751 samples, respectively. The training data and testing data consist of
80 % and 20 % of the entire dataset, respectively.

Additionally, the results are evaluated on the TORGO dataset. The TORGO
dataset consists of speech samples from 7 healthy and 8 dysarthric speakers, re-
spectively. The corpus consists of restricted and unrestricted sentences along with
non-words, and words [79]. These consists of English digits, alphabets, the 20
most frequent words in the British national corpus, and 50 words from the Fren-
chay Dysarthria Assessment (FDA). The recordings are performed using a mi-
crophone fixated at the head position at a sampling frequency of 16 kHz. The
considered dysarthric diagnosis for this work belongs to speakers with a spastic
type of dysarthria. The data consists of 1982 speech samples, where the very low
severity-level consists of 671 speech samples, a low severity-level with 627 sam-
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ples, and 684 samples belonging to the medium severity-level. In this work, 80 %
of the entire dataset is used for training and the rest of 20 % is used for testing.
The train test split is done such that both the splits consists of a mix of words and
sentences. Table 3.1 shows the speaker statistics of TORGO Corpus.

Table 3.1: Class-Wise Database Details for UA-Speech and TORGO Corpora. After
[29], [79].

Severity-Level UA-Speech Type TORGO Type
Very low F05, M09 Spastic F04, M03 Spastic

Low F04,M05 Mixed, Spastic F01, M05 Spastic
Medium F02, M04 Spastic M01, M04 Spastic

High F03, M01 Spastic - -

3.2.2 Speech Emotion Recognition (SER)

The EmoDB dataset is used. EmoDB is a German speech dataset consisting of 5
male and 5 female actors, whose 10 phrases are recorded. These phrases include 7
emotions, namely, sadness, disgust, anger, neutral, joy, boredom, and fear [9]. The
current investigation focused on four emotions, namely, happy, neutral, anger,
and sad, with one speaker reserved for the testing data. A total of 383 speech
samples are considered. This work adopts the Leave One Speaker Out technique
to test the speaker dependency of the feature sets. The train data consists of 338
samples, and the test data consists of 45 samples.

3.2.3 Pop Noise Detection

Voice liveness detection relies on effectively detecting pop noise, which is a cru-
cial factor in the process. To achieve this, the POco COrpus (POCO) is utilized for
pop noise detection. This dataset comprises recordings from 66 speakers, with a
balanced distribution of 34 male and 32 female speakers. The dataset is carefully
designed to cover all 44 phonemes of the English language through the selection
of specific words. It is divided into three subsets: RC-A (Recording with Micro-
phone), RP-A (Eavesdropping), and RC-B (Recording with Microphone Array).
For this study, the focus is on the RC-A and RP-A subsets when considering the
training utterances.
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Table 3.2: Statistic of POCO Dataset. After [2].
Data # Utterance Male Female
Train 6952 13 14

Development 3432 6 7
Test 6600 13 13

3.2.4 Infant Cry Classification

To analyze the performance of features for infant cry classification, the Baby Chillanto
dataset is used. The recording of this dataset is performed by multiple doctors,
who belong to NIAOE-CONACYT, Mexico [76]. The speech signals are sampled
at 16 kHz. Each cry signal is split into samples of 1-second duration, and it is
later grouped into 5 categories. These 5 categories are later clubbed into 2 groups
for normal vs. pathology classification. The healthy cry signals consist of sam-
ples from normal, hunger, and pain. The pathology cry includes samples from
asphyxia and dead. Table 3.3 shows the statistic of the dataset. In this work, 80 %
of the entire dataset is used for training, and the rest of 20 % is used for testing.

Table 3.3: Statistics of the Baby Chillanto dataset. After [76].
Class Category # Utterances

Healthy
Normal 507
Hungry 350

Pain 192

Pathology Asphyxia 340
Deaf 879

3.3 Classifiers

3.3.1 K- Nearest Neighbors (KNN) Classifier

It operates based on the principle that similar instances tend to belong to the same
class. It classifies an input data point based on the majority class among its K
nearest neighbors in the feature space. The choice of K, the number of nearest
neighbors to consider, is an important parameter in KNN. When the value of K
is small, the classifier is more sensitive to noise and individual data points in the
dataset. As a result, the decision boundaries can be more complex and irregular,
potentially leading to overfitting. As the value of K increases, the influence of
individual data points decreases. The decision boundaries become smoother and
more generalizable. A larger K value helps in reducing the effect of outliers or
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noisy data, leading to better classification accuracy on unseen instances [7]. How-
ever, if K becomes too large, the decision boundaries may become overly smooth,
potentially leading to underfitting. In such cases, the classifier may oversimplify
the data and struggle to capture complex patterns, resulting in reduced accuracy
[7].

3.3.2 Support Vector Machines (SVM) Classifier

The SVM is a classification algorithm that aims to find an optimal hyperplane for
separating classes, maximizing the margin between support vectors. To achieve
this, SVM utilizes kernel functions to transform the data into a higher dimensional
space, facilitating linear separation. These kernels can be of various types, such
as linear, polynomial, or Radial Basis Functions (RBF).

In addition to the kernel, the SVM classifier also incorporates a regularization
parameter known as "c." This parameter plays a crucial role in balancing the trade-
off between achieving a larger margin and minimizing training errors. A higher
value of c reduces misclassifications but increases the risk of overfitting, while a
lower value of c promotes better generalization but may lead to higher training
errors.

3.3.3 Random Forest Classifer

The random forest algorithm is an ensemble learning technique that combines
multiple decision trees to obtain an output. Each tree is trained on a random
subset of the features extracted from the data [7]. The final predictions of the
random forest classifiers are made by aggregating the prediction of individual
trees. There are a number of parameters to control the random forest classifier.
This work fine-tunes parameters that are vital to obtaining a good classification
accuracy which are the number of trees, maximum depth of trees, and minimum
samples split.

By increasing the number of trees, the classifier can capture a greater variety of
patterns and reduce the impact of individual noisy or outlier data points. How-
ever, beyond a certain point, adding more trees may not significantly improve
accuracy and can increase computational complexity. A higher amount of maxi-
mum depth of trees allows you to have more splits and capture intricate patterns
among the data. However, increasing the depth beyond a value might lead to
overfitting. The Minimum Samples Split determines the minimum number of
samples required to perform a split at an internal node or to be considered a leaf
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node, respectively. Increasing these values can lead to more robust and general-
ized trees, reducing overfitting. However, setting them too high may result in un-
derfitting and decreased accuracy, especially when dealing with smaller datasets.

3.3.4 Gaussian Mixture Model (GMM)

A Gaussian Mixture Model (GMM) is a combination of probability density func-
tions that are computed based on a Gaussian assumption. These functions are
characterized by mean vectors, covariance matrices, and mixture weights for each
component of the mixture. The training of a GMM typically involves the use of
the expectation-maximization algorithm, which aims to maximize the likelihood
between the classes, as described in [4]. The evaluation of GMM scores is per-
formed using a log-likelihood function.

3.3.5 Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is a type of deep learning model, that
employs convolution operation for data processing. It is composed of multiple
layers, including convolutional layers, pooling layers, and fully-connected layers.
The selection of the number, size, and arrangement of these layers is determined
by considering the specific attributes of the data, and the intricacy of the underly-
ing patterns.

Convolutional Layer

The operation of convolution is performed between the input and filter which is
also known as kernel. These filters or kernels capture the local patterns or spatial
relationships, allowing the classifier to learn meaningful features. The number of
filters, their size, and the stride (step size) of the convolutions were determined
based on the specific requirements of the task. The operation is performed by
sliding the kernel through the 2-D input matrix. The stride is the step size in the
horizontal direction. A large stride might result in a loss of information. Con-
volutional operations at the edges of the input can suffer from boundary effects.
These effects occur because the filters at the edges have fewer neighbouring pix-
els to convolve with compared to the filters in the central regions. In order to
eliminate this effect, padding is performed.
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Pooling Layers

In most cases, pooling layers were added following convolutional layers to de-
crease the spatial dimensionality and extract crucial features. Pooling plays a role
in capturing invariant features and decreasing computational complexity. Max
pooling and average pooling are common techniques used for pooling, where
the feature maps are downsampled by selecting the maximum or average value
within each pooling region, respectively.

Activation Function

To introduce non-linearity into the classifier, activation functions are employed.
The Rectified Linear Unit (ReLU) activation function is frequently utilized due to
its effectiveness in addressing the vanishing gradient problem.

Dropout Layer

The dropout layer is introduced to avoid overfitting the deep learning model.
This helps to improve the generalization ability. This layer drops a percentage of
a random set of neurons in the previous layer during the training iterations. By
randomly disabling neurons during training, dropout forces the network to learn
more robust and distributed representations of the data.

Batch Normalization Layer

The Batch Normalization (BN) layers are introduced for faster convergence of the
network. This is based on the concept of normalization of the input makes the
network learn faster. In the BN layer, we normalize the activation function of a
mini-batch of training samples. This helps to speed up the network training as
the normalization causes the loss function to become symmetrical and smooth
enabling us to use a larger learning rate without the need to worry about over-
shooting the minimum point. Additionally, this layer introduces a small amount
of regularization due to the randomness injected from the selection of batch sam-
ples in random order.

Fully-Connected Layer

The fully-connected layer or dense layers are added at the end of the CNN ar-
chitecture. The output from the convolutional layers is flattened and fed into the
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dense layers. To understand simply, the convolutional layers extract the meaning-
ful, low-dimensional, local features, and the FC layers try to find a non-linear de-
cision boundary to classify the features. This also provides the global view, which
is not present in the convolutional layers, i.e., the decision is based on looking at
the entire image instead of considering the first few rows/columns of a matrix.
For multi-class, the final layer consists of a softmax activation function, and for
binary class, it becomes a sigmoid function.

Architecture Details

In this work, The parameters are fine-tuned using the 5-Fold accuracy metric, and
it is found that a batch size of 128, a learning rate of 0.001, and epochs of 200 are
the best-optimized parameters.

Table 3.4: CNN Architecture for Dysarthria Severity-Level Classification, Emotion
Recognition, and Pop Noise Detection

Output Size Description
(20,2000,1) MGDCC
(20,2000,16) convolution layer, 16 filters, BN, relu
(10,1000,16) max-pooling, (2,2), dropout (0.25)
(10,1000,32) convolution layer, 32 filters, BN, relu
(5,500,32) max-pooling, (2,2), dropout (0.25)
(5,500,64) convolution layer, 64 filters, BN, relu
(2,250,64) max-pooling, (2,2), dropout (0.25)

(2,250,128) convolution layer, 128 filters, BN, relu
(1,125,128) max-pooling, (2,2), dropout (0.25)
(1,125,256) convolution layer, 256 filters, BN, relu
(1,125,256) dropout (0.25)

128 dense layer, relu
64 dense layer, relu
16 dense layer, relu
4 dense, softmax

CNN classifier is known to learn spatial hierarchies better. Table 3.4 represents
the classifier structure used for dysarthria classification, emotion recognition, and
voice liveness detection. Table 3.5 indicates the classifier structure used for infant
cry classification. Since infant cries and emotion recognition are known to have
better spatial information, hence CNN appears to be a better choice of classifier
than the other classifier structures.
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Table 3.5: CNN Architecture for Infant Cry Classification

Output Size Description
(20,130,1) CQHC
(20,130,16) convolution layer, 16 filters, BN, relu
(10,65,16) max-pooling, (2,2), dropout (0.25)
(10,65,32) convolution layer, 32 filters, BN, relu
(5,32,32) max-pooling, (2,2), dropout (0.25)
(5,32,64) convolution layer, 64 filters, BN, relu
(2,16,64) max-pooling, (2,2), dropout (0.25)
(2,16,16) convolution layer, 16 filters, BN, relu
(2,16,16) dropout (0.25)
(2,16,16) convolution layer, 16 filters, BN, relu
(2,16,16) dropout (0.25), followed by flattening

128 dense layer, relu
64 dense layer, relu
64 dropout (0.25)
1 dense, sigmoid

3.4 Performance Evaluation Metric

3.4.1 K-Fold Cross Validation Technique

The end goal of machine learning and deep learning models is a good generaliza-
tion. The cross-validation setup helps us to estimate the model’s ability to gener-
alize. This work uses the K-Fold cross-validation technique. Here the dataset is
split into K fold, where the K-1 fold is used for testing and the rest of the folds
are used as training data. The K represents a number of splits of the dataset. The
K-Fold also provides confidence in the score values as the test score of the K-Fold
is a result of the average of scores from K models. The stratified technique works
in a way such that each fold is a good representative of the entire dataset. This
helps us to avoid any kind of data imbalance.

3.4.2 Confusion Matrix

The confusion matrix serves as a technique to summarize the performance of a
classifier. It provides a more comprehensive understanding of the accuracy of the
classification model by indicating both correct classifications and the types of er-
rors being made. The combinations of actual and predicted values in a confusion
matrix result in the following parameters:
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• True Positive (TP): The positive values are correctly predicted as positive.

• False Positive (FP): The negative values are incorrectly predicted as positive.

• False Negative (FN): The positive values were incorrectly predicted as neg-
ative.

• True Negative (TN): The negative values were correctly predicted as nega-
tive.

3.4.3 Accuracy

It is one of the most simplest and powerful classification metrics. Accuracy pro-
vides a fair evaluation of the model only when the dataset is adequately balanced.
The accuracy score is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
. (3.1)

3.4.4 Precision

It is a measure of how many test samples predicted were correctly predicted for a
class. It gives us information about how precisely the model has made predictions
for a class. This metric is important when the cost of False Positive (FP) is higher.
Precision is calculated as:

Precision =
TP

TP + FP
. (3.2)

3.4.5 Recall

It is a metric that quantifies the accuracy of correctly predicting samples belonging
to a specific class. It measures the ratio of correctly predicted positive outcomes to
the total number of positive outcomes. This metric is particularly relevant when
the cost of false negatives (FN) is significant. The recall metric is calculated as:

Recall =
TP

TP + FN
. (3.3)

3.4.6 F1-Score

It is a powerful metric as it can be used for both balanced and unbalanced data.
This metric provides a balance between the precision and recall of a classification
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model. Higher the F1-Score, the better the classifier. The F1-Score is calculated as
the harmonic mean of precision and recall, and it can be calculated as:

F1 − Score = 2.
Precision.Recall

Precision + Recall
. (3.4)

3.4.7 Area Under Curve (AUC)

AUC is an important metric for imbalanced multiclass dataset classification. The
AUC curve measures the separability between the classes. The higher AUC, the
better the model. The AUC depends on 2 metrics, False Positive Rate (FPR) and
True Positive Rate (TPR). The TPR metric is the same as recall and the FPR metric
is calculated as:

FPR =
FP

TN + FP
(3.5)

3.5 Baseline Features Used

3.5.1 Mel Frequency Cepstral Coefficients (MFCC)

MFCC is a well-known feature set used for various applications. To extract the
MFCC features, the signal is pre-emphasized to amplify the energy content in the
higher frequencies. This is followed by windowing the speech signal into short
instances to make the speech signal a stationary signal. To avoid the generation
of high-frequency noise and to maintain the continuity of signal even after win-
dowing, we use an overlap length along with the window length. Later, the signal
is transformed into the frequency domain and a Mel filterbank is used to change
the frequency scale to the Mel frequency scale. If s indicates the frequency of the
signal, the conversion into the Mel scale is done as follows [33]:

Mel(s) = 2595 ∗ log(1 + s/700).

The magnitudes of the power spectrum obtained from the filterbank are passed
through the logarithmic operator. Further, a DCT function is applied to the log-
arithmically compressed filterbank outputs to obtain a compact representation of
the spectrum. The resulting coefficients are called MFCC.

The MFCC features are initially generated for musical signals as they capture
the pitch, and timbre information well. Since this work considers the infant cry
signal as a melodic signal, this becomes a solid baseline feature to outperform. It
should also be noted that the pitch information of a human speech signal plays a
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vital role in speech emotion recognition as the pitch varies drastically from emo-
tion to emotion. Additionally, this feature is also used as a baseline for dysarthria
and pop noise detection due to its resolution at low frequencies. It is observed
that the natural production noise of the speech production system increases with
voice disorder, and this production noise is present at lower frequencies. Further-
more, pop noise is a short-duration acoustic disturbance that is present at lower
frequencies, that often occurs during the production or recording of live speech.

3.5.2 Linear Frequency Cepstral Coefficients (LFCC)

The LFCC feature extraction technique is quite similar to that of the MFCC feature
extraction. The only change lies in the filterbank, we replace the Mel filterbank
with a linear filterbank.

The pitch of an infant is higher than that of an adult male or female speech.
Since the pitch lies in the higher frequencies for a cry signal, a better resolution
at higher frequencies might capture important information. To explore this and
given the poor resolution of MFCC features at high frequencies, LFCC features
are considered as the baseline features for the infant cry classification system. The
same applies to emotion recognition. Additionally, it is used as a baseline feature
in dysarthric severity classification in order to observe the increase in the linearity
of the formant structure with the dysarthric severity-level.

3.5.3 Constant-Q Cepstral Coefficients (CQCC)

The CQT-based cepstral coefficients have the ability to vary the spectro-temporal
resolution as it has a window function that is dependent on both time and fre-
quency. Additionally, this transform poses the form-invariance property, which is
used in the spectral-domain for pattern classification. Adding to this, the initial
study of CQT [8] indicates that this transform is designed to improve the note
resolution of music. Since this study considers the infant cry signal as a melodic
signal, this becomes a good baseline feature for the study. The CQCC features are
obtained by passing the CQT-based spectral coefficients through the DCT block.

3.6 Chapter Summary

This chapter discussed the datasets used for various problem statements, such
as dysarthria severity classification, infant cry classification, emotion recognition,
and voice liveness detection. Later, this chapter describes the classifier details
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used in this work and the performance evaluation metrics used for the classifi-
cation systems. In the next chapter, we present the group delay function and its
properties.
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CHAPTER 4

Group Delay and Modified Group Delay-Based
Features

4.1 Introduction

The speech signal is represented by the features obtained from the Short-Time
Fourier Transform (STFT) function, which yields a magnitude and phase-based
representation of the signal. While the significance of phase in speech signals
has been recognized in various studies, incorporating the phase spectrum into
speech applications remains challenging due to its complexity. One approach to
acquiring Fourier transform-based phase features is through the Group Delay (GD)
function. However, the GD function has certain limitations, leading to the devel-
opment of the Modified Group Delay Function (MODGF). This chapter explores the
Fourier transform-based phase spectrum, discusses the properties of the Fourier
phase spectrum, introduces the group delay function and its properties, and fi-
nally presents the modified group delay function as a solution to the drawbacks
of the group delay function.

4.2 Fourier Transform Phase

It is well known that a speech signal is a quasi-periodic, non-stationary signal
that continuously changes w.r.t time. As the human auditory system processes
the speech signal w.r.t frequency bands, the STFT analysis is performed to cap-
ture the information of a speech signal. To define the speech signal completely,
both magnitude and phase components are necessary since the major speech pro-
duction systems, such as the vocal tract system belong to the minimum phase
and the glottal source belongs to the maximum phase system in particular, both
zeros and poles of the glottal transfer function lies outside the unit circle. Ini-
tially, studies believed that the human auditory systems are phase deaf [50]. Later,
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studies have proven that distorting the phase makes the speech signal unrecog-
nizable [1]. Even though the importance of phase-based features for speech pro-
cessing has been studied, there has been a minimum effort for the application
of phase-based features for applications such as dysarthria severity classification,
emotion recognition and voice biometrics. It is also observed that the phase-based
features capture the irregularities in the speech signal such as turbulence which
helps to categorize the speech [16]. Consider the equation x(t)=1+ 0.5cos(2πt+ϕ1)

+cos(4πt+ϕ2)+ 0.66 cos(6πt+ϕ3). From Figure 4.1, it can be noticed that changing
the phase can change the signal. However, this cannot be observed in the magni-
tude spectrum. Hence, since the speech production system is a non-linear phase
system and in order to observe the phase distortions which might be important
for intelligibility assessment, one needs to observe the phase spectrum.

Figure 4.1: Plots for Signal x(t) at Various Phase Angles. (a) Zero Phase,(b) Linear
Phase, and (c) Non-Linear Phase where, x-axis indicated time and y-axis indicates
amplitude of the signal.

4.2.1 Properties of Fourier Transform Magnitude Spectrum

1. If x(n) is a real signal, then the magnitude spectrum is an even function of ω.

2. When the Inverse Fourier Transform is applied to a magnitude spectrum, it
produces a zero-phase signal. This implies that the magnitude spectrum is
independent of the phase of the original speech signal.

3. If the impulse response of a signal is of a cascade of resonators, then the
magnitude spectrum of the signal is given by the product of the magnitude
spectrum of each resonator.
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4.2.2 Properties of Fourier Transform Phase Spectrum

1. For the signal x(n) which is a real signal, the phase spectrum is an odd func-
tion of ω.

2. If the signal is shifted in the time-domain, it is translated as a linear phase
component in the phase-domain.

3. The Inverse Fourier Transform of the phase-spectrum is an all-pass signal.

4. If the signal x(n) is a cascade of resonators, the phase spectrum is the sum of
the unwrapped phase of each resonator.

5. The phase unwrapping technique is non-trivial indicating that there is no
specific way for unwrapping the wrapped phase.

4.3 Group Delay Function

Identifying resonance frequencies or formant frequencies from the phase spec-
trum poses a challenge because they are obscured by the phase wrapping phe-
nomenon at multiples of 2π. To overcome this issue, the signal must be a min-
imum phase signal, where the continuous (i.e., unwrapped phase) phase is de-
noted by θ(ejω). Minimum phase signals are preferred because their magnitude
spectrum and group delay spectrum exhibit similar characteristics. The group de-
lay function, which is the negative derivative of the unwrapped Fourier transform
phase, is used to quantify this relationship. The group delay function is defined
as [55]:

T(ejω) = −dθ(ejω)

dω
(4.1)

The group delay function can directly be derived from the signal z(n) as follows:

Tz(ejω) = −Im(
dlog(Z(ejω))

dω
) =

ZRVR + ZIVI

|Z(ejω)|2
(4.2)

where z(n) is the signal and v(n) is nz(n). Since the magnitude spectrum is an
even function, the log magnitude spectrum can be given as [53]:

ln|P(ejω)| = c(0)
2

+
∞

∑
n=1

c(n)cosnω (4.3)
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The phase spectrum is an odd function. Hence, the unwrapped phase is expressed
as:

θ(ejω) = −
∞

∑
n=1

c(n)sinnω. (4.4)

From equation 4.4, the group delay is obtained by calculating the negative deriva-
tive of the unwrapped phase.

T(ejω) =
∞

∑
n=1

nc(n)cosnω. (4.5)

From eq (4.3), (4.4), and (4.5), it is observed that the magnitude-based features
are related to the phase-based and group delay features through the cepstral co-
efficients. It can also be observed that the group delay function is calculated by
weighted cepstrum. While for maximum phase systems, the eq (4.4) and (4.5)
become as follows [96]:

θ(ejω) =
∞

∑
n=1

c(n)sinnω, (4.6)

T(ejω) = −
∞

∑
n=1

nc(n)cosnω. (4.7)

4.3.1 Properties of Group Delay Function

The properties of the group delay are stated below:

1. The presence of poles and zeros in the transfer function is manifested as
peaks and valleys in the group delay spectrum, respectively.

2. Convolution of the time domain signal results in additivity in group delay
domain signal. Let x(n) = x1(n) ∗ x2(n), the magnitude spectrum results in
X(ejω) = X1(ejω)X2(ejω) where each Xi(ejω) is a response of an individual
resonator. The magnitude response is given as:

|X(ejω)| = |X1(ejω)||X2(ejω)|. (4.8)

The phase response and the group delay response is :

argX(ejω) = argX1(ejω) + argX2(ejω), (4.9)

TX(ejω) = −d(argX1(ejω))

dω
− d(argX2(ejω))

dω
. (4.10)

TX(ejω) = TX1(ejω) + TX2(ejω) (4.11)
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3. The high resolution characteristic of the group delay function leads to im-
proved resolution in identifying closely spaced resonant peaks or formant
peaks.

4.3.2 Issues with Group Delay Spectrum

The group delay function is specifically applicable to minimum phase signals [56],
while the speech signal is a mixed-phase system that contains zeros introduced by
noise or nasal sounds. These zeros, located near the unit circle, are manifested as
prominent spikes in the group delay spectrum. In 4.2, two zeros α and β are de-
picted. Based on triangle properties, the largest interior angle corresponds to the
side opposite it. Consequently, the chord between ω1 and ω2 will be longer for
zeros in proximity to the unit circle. This implies a higher rate of change for ze-
ros near the unit circle. Furthermore, larger angles result in shorter distances to
frequency bins and smaller denominators in the group delay function. These un-
desired spikes hinder the identification of original formant locations and cannot
be effectively eliminated through smoothing techniques. These spikes emerge due
to reduced denominators in Equation 4.2, leading to larger group delay values. To
address these undesirable spikes, the Modified Group Delay Function (MODGF)
is introduced [54].

Figure 4.2: Issue with GD. ω1 and ω2 represents the adjacent frequency bins.
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4.4 Modified Group Delay Function (MODGF)

Voiced speech comprises both causal and non-causal components. In order to ad-
dress the issue of unwanted spikes and achieve a meaningful representation of
the group delay spectrum, the Modified Group Delay Function (MODGF) is in-
troduced. When the zeros are positioned near the unit circle, the denominator
of the group delay function becomes very small, resulting in a spiky and lim-
ited dynamic range of the group delay for a speech signal. To mitigate this spiky
nature, the denominator of the group delay function is replaced with a centrally-
smoothed version, which represents the envelope of the source information. The
modified group delay function effectively moves the zeros radially inside the unit
circle, thereby reducing the occurrence of spikes in the valleys. Let the frequency
domain representation of g(n) and ng(n) be G(ω) and H(ω). The ng(n) helps to
generate the delayed signal. A cepstrally smoothened |G(ω)| is computed. The
cepstral smoothened signal helps to restore the dynamic range, and reduce the
spiky structure of the phase-based features. Later, the modified group delay func-
tion is computed as:

Tm(ω) =
T(ω)

|T(ω)| |T(ω)|α, (4.12)

where,

T(ω) =
GR(ω)HR(ω) + GI(ω)HI(ω)

|S(ω)|2γ , (4.13)

where S(ω) represents the cepstrally smoothed version of G(ω) and GR, GI , HR,
and HI indicate the real and imaginary parts of g(n) and ng(n), respectively. Two
new parameters, α and γ are introduced, which are used to restore the dynamic
range and reduce the amplitude of the unwanted spikes. α and γ lies between
0 <α ≤ 1 and 0 <γ ≤ 1.

4.5 Chapter Summary

This chapter discussed the brief technical details and the application for speech
applications of Fourier transform-based phase features. The importance of phase
features and their properties. Later, the group delay and modified group delay
functions are introduced. The next chapter shows the application of these phase-
based features for dysarthria severity-level classification.
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CHAPTER 5

Modified Group Delay Features for Dysarthric
Severity Classification

5.1 Introduction

Dysarthria is a neuro-motor speech disability that impairs speech comprehension,
however, it is typically undetectable to humans. In addition to assisting automatic
dysarthric speech recognition systems, dysarthric speech severity-level classifica-
tion serves as a diagnostic tool for assessing the progression of a patient’s se-
vere condition and recognition of dysarthric speech-an important assistive speech
technology. The phase-based features are used for voice pathology detection due
to their ability to capture the irregularities caused due to disordered speech. The
dysarthria severity causes an increase in turbulence leading to introduce higher
irregularities than normal speech. The phase information is known to have more
temporal (and also transitional) information of the speech signal than the mag-
nitude spectrum information. This study investigates the effect of phase-based
features over magnitude-based features for dysarthric severity-level classifica-
tion. To that effect, Modified Group Delay Cepstral Coefficients (MGDCC) are
imposed against state-of-the-art features, namely, Mel Frequency Cepstral Coef-
ficients (MFCC) and Linear Frequency Cepstral Coefficients (LFCC) using CNN
and GMM as the classifiers with accuracy, precision, recall, and F1-score as per-
formance metrics on UA-Speech and TOROG datasets. Additionally, the effect
of dynamic features for dysarthria severity classification is also observed. Fur-
thermore, to verify the speaker independency of the proposed feature set, cross-
database analysis is performed using the CNN classifier. Finally, to understand
the practicality of the proposed feature set, latency period analysis is performed.
From the results, it is seen that the proposed features surpass the baseline fea-
tures comfortably. The experiments are performed by splitting the data into 80 %
training and 20 % testing set.
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5.2 Proposed Features

This work proposes modified group delay-based features for dysarthria classifica-
tion. The feature extraction procedure involves computing the STFT of the signals
x(n) and nx(n), respectively. Let the frequency domain representation of g(n) and
ng(n) be G(ω) and H(ω). The ng(n) helps to generate the delayed signal. A cep-
strally smoothened |G(ω)| is computed. The cepstral smoothened signal helps
to restore the dynamic range and reduce the spiky structure of the phase-based
features. Later, the modified group delay function is computed as:

Tm(ω) =
T(ω)

|T(ω)| |T(ω)|α, (5.1)

where,

T(ω) =
GR(ω)HR(ω) + GI(ω)HI(ω)

|S(ω)|2γ , (5.2)

where S(ω) represents the cepstrally smoothed version of G(ω).

Figure 5.1: Functional Block of Proposed MGDCC Feature Extraction for the
Dysarthric Severity-Level Classification System.

In order to obtain the cepstral features of the modified group delay function,
a DCT operation is performed. The first coefficient of the DCT is neglected in this
work. The first coefficient value indicated the average value in the group delay
function. Due to the factors like linear phase resulting due to window and location
of the pitch w.r.t window, the importance of the DC coefficient is an unexplored
area. The functional block diagram for the feature extraction procedure is shown
in 5.1.

5.3 Motivation of Phase-Based Features for Dysarthria

Studies have shown that the group delay features capture the irregularities and
the turbulences produced during the phonation [16]. To study the variation of
production noise for a dysarthric speaker wrt severity level, an acoustic parame-
ter known as Voice Onset Time (VOT) is studied. The speech production system
generates production noise due to variations occurring from various sources, such
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Figure 5.2: Fig. 5.2(i), Fig. 5.2(ii), Fig. 5.2(iii), and Fig. 5.2(iv) of Each Panel
Depicts the Time-Domain Waveform, Mel Spectrogram, STFT Spectrogram, and
Modified Group Delay-Gram of the Clean Dysarthric Speech Signal of the Word
"to". Fig. 5.2(a), Fig. 5.2(b), Fig. 5.2(c), Fig. 5.2(d) Indicate Very Low, Low,
Medium, and High Dysarthric Severity-Level Clean Speech Signals, respectively.
The Voice Onset Time (VOT) Regions of Various Dysarthria Severity-Levels are
Circled. Best Viewed in Colour.

as the vocal tract systems. This production noise contributes to the generation of
various speech sounds, such as plosive and fricative consonants. The VOT is an
acoustic property that captures the vocal fold vibrations during the release of plo-
sive consonants. This acoustic property provides insight into the production of
stop consonants, and how it gets affected by dysarthria severity-level. It can be
observed from Fig. 5.2, the time-domain plots show that along with the duration,
the energy of the VOT region also increases with the severity-level. It might be
because of the lack of speech system muscle coordination as the tongue moves
towards the lips. Additionally, it is observed that the duration of VOT for a very
low severity-level is 124 ms, while it is 252 ms for a high severity-level speaker.
It can be observed that MGDCC features are able to capture this low frequency
VOT information, whereas the magnitude-based features fail to capture the VOT
information.
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5.4 Experimental Results

5.4.1 Parameter Tuning for MGDCC

MGDCC involves two constraint parameters, alpha (α), and gamma (γ). The pa-
rameters are fine-tuned using a greedy search algorithm, i.e., the parameters are
optimized wrt to the performance of severity-level classification. The parameters
are varied from 0 to 1 with a step size of 0.1. The evaluation is done based on
the CV scores of the CNN classifier. The best fold accuracy is achieved for α = 0.1
and γ = 0.3, resulting in an accuracy of 96.53 % and 96.46 % for UA-Speech and
TORGO corpora, respectively. This result indicates that the obtained alpha and
gamma parameters are the generalized parameters for the dysarthria severity-
level task. The effect of parameters can be seen in Fig 5.3.

Figure 5.3: Fine Tuning of α and γ Using Greedy Search Technique for Dysarthric
Severity-Level Classification on UA-Speech Corpus (D1), and TORGO Database
(D2).

5.4.2 Dimensionality Tuning for MGDCC

The dimensions of the MGDCC features are varied from a standard size of 13 to
30 with a step size of 3. The 20-D features resulted in the best accuracy of 96.53 %
when compared with the other dimensions.
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Figure 5.4: Fine Tuning of Feature Dimension on UA-Corpus.

5.4.3 Results for Dysarthric Severity Classification

Experiments are performed using stratified 5-fold CV. The results are performed
on Convolutional Neural Networks and simple machine learning classifiers, such
as Gaussian Mixture Models. CNN classifier is known to learn spatial hierar-
chies better, which are vital differentiating features in the speech signal and hence,
CNN appears to be a better choice of classifier than the other classifier structures.
From Table 5.1, it can be observed that the cepstral coefficients with a linear filter-
bank (i.e., LFCC) result in a better classification accuracy than the Mel filterbank
(i.e., MFCC). This indicates that the linearity of the dysarthric speech increases
as the severity-level increases resulting in more information capture using a lin-
ear filterbank. It can also be seen that the phase-based features (i.e., MGDCC)
achieved a higher classification accuracy. when compared to baseline magnitude-
based MFCC and LFCC features (with an absolute improvement of 5.23 % and
2.40 %, respectively). Hence, the phase-based cepstral features capture crucial in-
formation that aids in the classification of dysarthric severity-level. Since MGDCC
returns higher precision, the number of false positives is less compared to the
baseline features, and higher recall signifies that the count of false negatives is
less. Hence, the accuracy results can be supported by the F1-score metric.

On the contrary, the CNN classifier performs better than the traditional GMM
classifier. This indicates that the GMM classifier is not suitable for the severity-
level classification of dysarthria. Furthermore, GMM is only based on mean and
variance, which might not be adequate to capture the non-linearity patterns in
the speech production mechanism and dysarthric speech. The inclusion of higher-
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order moments requires training data with longer-duration dysarthria speech data.
On the other hand, the proposed deep learning architecture, CNN is able to cap-
ture the non-linearities in speech patterns from short-duration speech signals.
However, the performance of the GMM classifier improves in the TORGO database
as the database contains longer-duration sentences along with the words. This en-
ables GMM to capture the patterns better when compared to the short-duration
speech that is present in the UA-Speech corpus.

Table 5.1 also shows that traditional group delay function features do not fare
well for dysarthric severity-level classification. This is due to large spikes pro-
duced by mixed-phase signals, such as speech. These large spikes in the group
delay spectrum mask the formant information, making the features least informa-
tive for the classifier. In particular, as per Manfred Schroeder, "Human being emits
and perceive sounds by emitting spectral peaks (resonances) and the spectral val-
leys (anti-resonance)." Thus, the GDF disrupts the formant structure and hence,
affects the perception of sounds and thereby, speech intelligibility.

Table 5.1: % Classification Accuracy for Various Feature Sets using GMM and
CNN Classifiers on UA-Speech (D1) and TORGO (D2) Corpora. The values in the
brackets indicate the test accuracy.

Dataset Classifier Features 5-fold Precision Recall F1-Score
MFCC 84.14 80.22 83 81.58
LFCC 84.14 81.97 83.16 82.56
GDCC 73 71.19 70.03 70.60GMM

MGDCC 85.48 85 83.21 84.09
MFCC 91.30 (91.49) 92.36 93.04 92.07
LFCC 94.13 (94.90) 93.94 93.98 93.95
GDCC 73.60 (71.24) 71.04 75.72 73.26

D1

CNN

MGDCC 96.53 (96.75) 96.71 96.76 96.52

MFCC 83.92 74.55 70.48 72.40
LFCC 83.21 72 76.70 74.27
GDCC 71.86 73.11 75.95 74.48GMM

MGDCC 83.92 74.32 75.18 74.74
MFCC 87.67 (85.64) 89.67 87.89 88.77
LFCC 92.49 (92.41) 94.37 92.94 93.64
GDCC 74.02 (74) 84.91 76.03 74.29

D2

CNN

MGDCC 96.46 (96.71) 94 94.12 94.05

5.4.4 Effect of Dynamic Features

The study of the effect of dynamic features is studied on UA-Speech Corpus. The
experiments are only performed on the CNN classifier due to its ability to cap-
ture the non-linearities and due to the poor performance of the GMM classifier as
observed in the previous section. It is observed that the average time duration of
very low, low, medium and high severity-levels is 2.249, 2.536, 3.436, and 4.316
seconds, respectively. Hence, as the severity-level increases, the speech variations
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Table 5.2: Effect of Dynamic Features on UA-Corpus Dataset Using CNN Classi-
fier. The values in the brackets indicate test accuracy.

Features ∆ ∆∆
MFCC 73.39(75.67) 64.20(60.19)
LFCC 75.51(78.41) 62.33(65.92)
GDCC 22.57(20.35) 21.90(20.36)

MGDCC 85.33 (86.52) 65.12(69.60)

for a shorter time instance decrease. This statement can be proved experimentally
by considering the delta (∆) and delta-delta (∆∆) features. Since the variations in
the speech signal approach are constant as the severity-level increases, the infor-
mation captured using the dynamic parameters decreases as the rate of change
almost becomes 0. This causes low accuracy values, when compared with the
static features.

5.4.5 Cross-Database Evaluation

Further, experiments of cross-database are performed between 2 datasets (UA-
Speech and TORGO) using CNN classifier. Both the databases are re-sampled to
22.050 kHz. The classifiers till now might be able to take advantage of the simi-
lar dysarthric type and uniformity of the data present in train and test split. The
cross-database evaluation helps to confirm if the feature is actually able to capture
the dysarthric-based features. This experiment helps to capture the features in a
generalized sense of dysarthric classification. When the model is trained using
UA-Speech corpus and tested using TORGO, there is a significant drop in perfor-
mance. This is because the TORGO dataset consists of both words and sentences
along with the different recording conditions. The experiments are performed
without omitting the sentences as this experimentation pushes the generaliza-
tion concept to its limits. From Table 5.3, the MGDCC outperforms the baseline
features on both the experimental setup indicating that the feature set is able to
capture dysarthric-based features in challenging conditions when the test data is
completely different from the training dataset. Further, it can be observed from
Table 5.3 that the performance of GDCC is poor than MFCC and LFCC, more so,
than MGDCC; indicating that the modified GDF is indeed helping us to capture
the formant structure better than GDCC.
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Table 5.3: Cross-Database Evaluation using CNN Classifier.

Train UA-Speech TORGO
Test TORGO UA-Speech

Accuracy P R F1 Accuracy P R F1
MFCC 33.85 34.08 35.22 35.14 42.03 45.22 42.05 43.57
LFCC 27.60 20.72 28.98 24.16 49.14 52.71 49.16 48.22
GDCC 28.31 31.72 23.61 27.07 29.58 29.13 33.04 30.97

MGDCC 43.29 47.02 45.98 46.49 51.24 53 50 51.45

5.4.6 Analysis of Latency Period

Latency period analysis is performed on MFCC, LFCC, and MGDCC feature sets
on UA-Speech and TORGO corpora as shown in Fig 5.5. The latency period is
estimated by computing the % classification accuracy w.r.t varying time duration
of the speech segment. The latency period is varied from 50 frames (0.12 seconds)
to 1200 frames (3 seconds). The latency period is the duration between the speech
utterances produced to the system, and the response from the system in terms of
% fold accuracy indicating the number of frames considered for the classification
of an utterance. Hence, if the system performs well at lower latency, then it can
be understood that the system classifies the utterance without needing a larger
duration of the speech. It can be seen that the MGDCC features give a significant

Figure 5.5: Latency Period Analysis on (a) UA-Speech Corpus, (b) TORGO
Database, using CNN Classifier. After [69].

classification performance in the limited duration speech utterance of < 675 ms.
On the contrary, both the MFCC and LFCC feature sets take a relatively longer
duration to achieve comparable performance. A similar trend can be observed for
the latency period using the TORGO database from Fig 5.5. The MGDCC features
reached the maximum accuracy for the limited duration speech utterance of <250
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ms.

5.4.7 Chapter Summary

This chapter discusses the application of phase-based MGDCC features for dysarthric
speech. The parameter tuning of MGDCC is shown followed by the dimensional-
ity tuning of the feature vector. Later, the proposed features are seen outperform-
ing the magnitude-based features, which are considered the baseline features.
Furthermore, the effect of the dynamic features for severity-level classification
is observed. Finally, the chapter closes with the cross-database evaluation and la-
tency period analysis. Since the 5-Fold score and test score lie in a similar range
of values. The following results will represent the 5-Fold test accuracy alone. This
also provides us insights into the average range of variation of the test accuracy.
In the next chapter, we present the property of noise robustness of the modified
group delay function. Later, the dysarthric speech detection task is performed
using the proposed feature set.
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CHAPTER 6

Noise Robustness of Modified Group Delay
Function

6.1 Introduction

Numerous techniques have been proposed for the classification of dysarthria severity-
level. However, these methods may exhibit degraded performance in the pres-
ence of background noise, resulting in inaccurate severity-level classification. To
address this limitation, this chapter investigates the noise robustness of the group
delay and modified group delay functions for dysarthria severity-level classifica-
tion. The evaluation is conducted on the UA-Speech and TORGO corpora using a
CNN classifier. Various stationary and non-stationary noises are employed to test
the robustness of the proposed functions, including white and pink noise as sta-
tionary noises, and street and babble noises as non-stationary noises, at different
Signal-to-Noise Ratio (SNR) levels.

Additionally, dysarthric speech detection is performed using Fourier trans-
form phase-based features. The baseline features for comparison are magnitude-
based Mel Frequency Cepstral Coefficients (MFCC), and Linear Frequency Cep-
stral Coefficients (LFCC). The experimental results demonstrate that the proposed
features outperform the baseline features, even under severe signal degradation
caused by noise. Moreover, the proposed feature set exhibits strong classification
performance in distinguishing between speakers with very low severity-level and
control speakers, surpassing the performance of the baseline features. This high-
lights the effectiveness of phase-based features.

The experiments involve an 80 % training and 20 % testing data split, and the
model’s performance is evaluated using the 5-Fold cross-validation technique.
The results of the 5-Fold test accuracy are presented, demonstrating the robust-
ness and efficacy of the proposed features in various noise conditions.
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6.2 Additive Noise Robustness of Group Delay

In this sub-section, we analytically show the robustness of the group delay func-
tion to additive noise, which is also applicable to the modified group delay func-
tion [63]. Let u(n) showcase a clean speech signal, degraded by adding additive
noise, which is uncorrelated v(n) with 0 mean, and σ2 variance. Then, the noisy
speech z(n) can be expressed as:

z(n) = u(n) + v(n). (6.1)

Taking the Fourier transform and obtaining the power spectrum we have,

Pz(ω) = Pu(ω) + Pv(ω). (6.2)

From eq.(6.2), there can be two mutually exclusive frequency regions, namely, high
SNR and low SNR.

Low SNR Case

Considering a low SNR situation, i.e., Pu(ω) << σ2(ω) (where noise power is
σ2(ω) due to the assumption that noise is having 0 mean), we have:

Pz(ω) = σ2(ω)(1 +
Pu(ω)

σ2(ω)
). (6.3)

Taking the logarithm on both sides and using the Taylor expansion, and ignoring
the higher-order terms results in:

ln(Pz(ω)) ≈ ln(σ2(ω)) +
Pu(ω)

σ2(ω)
. (6.4)

Since Pu(ω) is a continuous and periodic function of ω, it can be expanded using
the Fourier series. In particular,

ln(Pz(ω)) ≈ ln(σ2(ω)) +
1

σ2(ω)

[
d0

2
+

+∞

∑
k=1

gkcos(
2π

ω0
ωk)

]
, (6.5)

Since Pu(w) is a power spectrum, it is an even function, and the coefficient values
of sine (basis) terms are zeros. To relate the spectral phase and magnitude with
the cepstral coefficients, let us consider the Fourier transform representation of a
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sequence b(n):
B(ejω) = |B(ejω)|ejθ(ejω). (6.6)

Since the log-magnitude component is an even function, the resulting Fourier se-
ries expansion can be given by:

ln(|B(ejω)|) = c[0]
2

+
+∞

∑
n=1

p[n]cos(ωn). (6.7)

From the properties of the Fourier phase spectrum, the phase spectrum is an odd
function. Hence, the resulting Fourier series expansion is given by:

θ(ejω) = −
+∞

∑
n=1

p[n]sin(ωn), (6.8)

where p[n] is the nth cepstral coefficient. Group delay coefficients are obtained by
considering the negative logarithm of the unwrapped phase obtained in eq (6.8):

T(ejw) =
+∞

∑
n=1

np[n]cos(ωn). (6.9)

From eqs (6.7) and (6.8), it can be observed that the phase and log-magnitude
spectra of a signal are related through the cepstral coefficients. Assuming the
additive noise as a minimum phase signal [31]. From eqs (6.7), (6.8), and (6.9),
it can be observed that the group delay function can be extracted from the log-
magnitude response by ignoring the DC term, and multiplying each coefficient by
k. Applying this observation to eq.(6.5) we can obtain the group delay function as
[63]:

Tz(ω) ≈ 1
σ2(ω)

+∞

∑
k=1

kgkcos(ωk). (6.10)

Eq.(6.10) indicates that the group delay function is inversely proportional to the
noise power in the regions with low SNR. This indicates that the group delay
function preserves peaks and valleys well in the presence of additive noise and
hence, helps in speech intelligibility.

High SNR Case

Now assume the case such that Pu(ω) >> σ2(ω) , we have:

Pz(ω) = Pu(ω)(1 +
σ2(ω)

Pu(ω)
). (6.11)
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Taking the logarithm on both the sides and using the Taylor series expansion re-
sults in:

ln(Pz(ω)) ≈ ln(Pu(ω)) +
σ2(ω)

Pu(ω)
. (6.12)

Since Pu(w) is a non-zero, continuous, and periodic function of ω, the same can
be said about 1

Pu(ω)
. Hence, both ln(.) and (1

. ) of eq.(6.12) can be expanded using
the Fourier series, resulting in:

ln(Pz(ω)) ≈ d0

2
+

σ2(ω)e0

2
+

+∞

∑
k=1

(gk + σ2(ω)ek)cos(ωk), (6.13)

where gk’s and e′ks are the Fourier series coefficients of ln(Pu(ω) and 1
Pu(ω)

, respec-
tively.

Using eqs (6.7) and (6.8), we obtain the group delay function as:

Tz(ω) ≈
+∞

∑
k=1

k(gk + σ2(ω)ek)cos(ωk). (6.14)

Eq.(6.14) indicates that the noise power (σ2(ω)) is negligible, when the signal
power is higher than the noise power and the group delay function can be rep-
resented by only using the log-magnitude spectrum. Hence, from both the SNR
cases, it can be concluded that the group delay spectrum follows the signal spec-
trum instead of the noise spectrum making it robust to the additive noise.

6.3 Spectrographic Analysis

Fig.6.2 represents the noisy speech signal corrupted using white noise at SNR
level of -5 dB. From the time-domain plots, it is observed that the VOT region
of the signal is completely masked by the addition of noise. From the group de-
lay gram, the amount of noise at the lower frequencies is significantly less, when
compared with magnitude-based features. This helps in the detection of the VOT
due to the fact that the VOT is observed at lower frequencies. Additionally, the
formant structure, and the resolution are preserved even in degraded conditions.
Furthermore, MGDCC is found to boost signal energy along with the minimiza-
tion of noise energy. This can be explained by the analytical analysis performed
above, where it is seen that the modified group delay function follows the signal
energy rather than the noise energy.
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Figure 6.1: Fig. 5.2(i), Fig. 5.2(ii), Fig. 5.2(iii), and Fig. 5.2(iv) of Each Panel Depicts
the Time-Domain Waveform, Mel Spectrogram, STFT Spectrogram, and Modified
Group Delay-Gram of the Noisy Dysarthric Speech Signal of the Word "to". Fig.
5.2(a), Fig. 5.2(b), Fig. 5.2(c), Fig. 5.2(d) Indicate Very Low, Low, Medium, and
High Dysarthric Severity-Level Noisy Speech Signals.

6.4 Experimental Results

6.4.1 Results under Signal Degradation Conditions

The robustness of the proposed MGDCC feature set is tested using various noise
types, such as white, pink, babble, and street noise with SNR levels of -10 dB, -5
dB, 0 dB, 5 dB, 10 dB, 15 dB, and 20 dB. Table 6.1 and Table 6.2 indicate the robust-
ness of UA-Speech and TORGO corpora, respectively. When considered white
noise for evaluation, due to the nature of AWGN, the noise gets added equally
in all the frequency bands. From Fig 6.2, MGDCC outperforms MFCC and LFCC
by a considerable margin. The MFCC performs poorly than the LFCC because
of the amount of noise added in the higher frequency regions. The MFCC has
fewer subband filters when compared with LFCC (due to Mel frequency wrap-
ping) resulting in poor robustness for white noise. Considering that the signal
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is degraded by the pink noise, which contains more noise power at lower fre-
quencies, and less noise power at higher frequencies. The MGDCC feature set
continues to show the noise robustness to the additive noise. MFCC performed
better when compared with LFCC due to the nature of pink noise. Since the noise
gets added in lower frequency regions, the higher number of filterbanks in MFCC
helps it to become robust for the pink noise. Additionally, non-stationary noises
such as street noise and babble noise are considered. The MGDCC feature contin-
ues to outperform the baseline features (MFCC and LFCC). These results indicate
that the performance of the baseline features is degraded in the presence of sta-
tionary and non-stationary noise, whereas the performance of MGDCC remains
intact across various noise types. These results prove the additive noise robust-

Figure 6.2: Accuracy at Low SNR Levels using CNN Classifier.

ness property, and also that the group delay spectrum is known to emphasize the
signal spectrum rather than the noise spectrum. It can also be explained by the fact
that the MGDCC feature set pushes the zeros into the unit circle (in the Z-plane)
in an attempt of making the signal a minimum phase, which may also help in the
suppression of noise. The fact that the group delay function gives a larger peak at
formant frequencies, when compared with magnitude-based features might also
be a reason for better performance under noisy conditions.

6.4.2 Results under Severe Degradation Conditions

The experiments of severe signal degradation are performed using white noise,
and a CNN classifier on the UA-Speech corpus. From Table 6.3, as the SNR level
is dropped to as low as -40 dB, the MFCC and LFCC clearly struggle with the
accuracy dropping as low as 39. 78 % and 24 %, respectively. On the contrary,
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Table 6.1: % Accuracy for Various Noise Types Across Various SNR Levels using
CNN Classifier on UA-Speech Corpus.

Noise Type Features SNR (dB)
-10 -5 0 5 10 15 20

MFCC 66 67.31 81 80.84 81.38 92.68 94.48
LFCC 61.30 66.29 89.68 92 92.86 93.71 93.46
GDCC 68.19 68.40 68.51 69.14 69.50 69.85 70.29White

MGDCC 86.24 90.28 91.55 92 94 94.48 94.80
MFCC 89.82 90.56 91.40 92 94.52 94.52 95.22
LFCC 75.54 77.70 92.47 93.18 94.16 94.60 95.54
GDCC 67.71 68.12 69.76 65 64.31 69.90 70.11Pink

MGDCC 91.06 92.40 93.32 95.19 95.26 95.41 95.58
MFCC 87.06 91 91.80 93.49 94 94.24 94.24
LFCC 80.60 80.38 89.85 92.40 93.10 93.47 94.84
GDCC 63.92 94.92 67.31 68.26 61.05 68.14 68.51Street

MGDCC 93.49 94.38 94.38 94.82 95.30 95.73 95.79
MFCC 88.16 90.58 91 90.70 91.90 91.20 91.30
LFCC 79.85 80.71 88.47 93.49 93.78 95.37 95.97
GDCC 67.71 69.46 69.76 66.60 69.99 70.84 70.88Babble

MGDCC 92.07 93 94.38 94.90 95.01 95.08 95.68

Table 6.2: % Accuracy for Various Noise Types Across Various SNR Levels using
CNN Classifier on TORGO Corpus.

Noise Type Features SNR (dB)
-10 -5 0 5 10 15 20

MFCC 62.01 64.98 67.76 70.47 72.11 75.42 82.01
LFCC 70.22 70.59 70.13 71.30 71.54 71.75 74.71
GDCC 64.98 71.02 71.70 74.20 74.95 77.66 80.43White

MGDCC 80.56 84.21 87.69 87.79 87.87 88.95 91.79
MFCC 74.63 77.35 75.70 80.34 80.44 81.51 84.72
LFCC 77.35 78 78.54 81.77 83.54 90 91.14
GDCC 71.60 74.51 76.02 73.88 80.60 79.93 82.15Pink

MGDCC 80.63 86.11 86.67 87.63 88.39 89.02 90.77
MFCC 76.65 76.89 75.45 75.45 76.08 81.24 83.53
LFCC 74 74.91 72.61 79.05 79.49 81.51 86.23
GDCC 80.96 82.11 82.01 85 87.57 84.41 85.14Street

MGDCC 88.13 89.33 90.12 90.15 90.36 92.55 90.11
MFCC 77.15 82.14 84.54 83.92 84.72 86.11 88.10
LFCC 81.19 83.09 82.9 80 83.49 85.92 87.79
GDCC 80.85 84.88 83.91 86 91.89 88.95 89.58Babble

MGDCC 87.12 84.52 84.03 86.18 86.75 90.22 90.66

Table 6.3: % Accuracy for Signal Degraded using White Noise at Severe SNR Lev-
els using CNN Classifier on UA-Speech Corpus

SNR (dB) MFCC LFCC MGDCC
-15 59.97 57.74 83.73
-20 50 44.9 77.50
-25 41.81 33.15 68.19
-30 39.92 31.24 63.07
-35 39 26.62 52.29
-40 39.78 24 52

MGDCC outperforms MFCC and LFCC by 12.22 % and 28 %, respectively. This
experiment shows the extent of the robustness of the proposed feature set.
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6.4.3 Dysarthric Speech Detection

From Fig 6.3 and Fig 6.4, MGDCC shows significantly higher accuracies in the
classification of normal speech w.r.t very low and low severity-levels. This result
encourages the use of MGDCC features due to the fact that the majority of the
current dysarthria systems benefit from the detection of higher severity-levels,
which do not need much information. Hence, it can be inferred that the MGDCC
captures the distinguishing features between normal and dysarthria speech well
even for lower severity-levels. On the contrary, GDCC performs poorly for low

Figure 6.3: Dysarthric Speech Detection on Both Datasets using CNN Classifier.

severity-levels due to the fact that the group delay function fails to capture for-
mant information due to the unwanted peaks in the spectrum.

Figure 6.4: Dysarthric Speech Detection on Both Datasets using CNN Classifier.
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6.4.4 Chapter Summary

This chapter demonstrated the noise robustness of modified group delay-based
cepstral features (MGDCC). The analytical explanation is supported by the re-
sults obtained using experiments performed by considering stationary and non-
stationary noises at various SNR levels for severity-level classification. Further,
dysarthric speech detection is performed. The next chapter discusses the applica-
tion of phase-based features for speech emotion recognition task.
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CHAPTER 7

Modified Group Delay Features for Speech Emo-
tion Recognition

7.1 Introduction

As technological advancements progress, dependence on machines is inevitable.
Therefore, to facilitate effective interaction between humans and machines, it has
become crucial to develop proficient techniques for Speech Emotion Recognition
(SER). This chapter proposes the feature set, namely, MGDCC for the SER task.
This chapter shows the ability of phase-based features to classify emotions. The
feature sets are applied to the German language-based EMO-DB database, and the
results are obtained on the CNN classifier. The magnitude-based Mel Frequency
Cepstral Coefficients (MFCC), and Linear Frequency Cepstral Coefficients (LFCC)
are baseline features for this study. From the results, it can be observed that the
proposed features surpass the baseline features comfortably. Furthermore, the
noise robustness of the MGDCC feature set is also explored with stationary and
non-stationary noise types. Additionally, to check the practicality of the proposed
feature set, latency period analysis is performed. All the mentioned features are
evaluated by keeping a window size of 25 ms and a hop length of 10 ms, Fmin

= 100 Hz, and octave resolution of 14. This work uses the leave one speaker out
technique in order to check the speaker independence of the feature set. The train-
ing data consists of speech samples from 9 speakers, while the test data contains
1 speaker. From the results, it can be noticed that the phase-based features out-
perform the baseline features. The analytical explanation of the robustness of
additive noise is practically proven through experimentation.
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7.2 Motivation of Phase-Based Features for Emotion

Recognition

Phase-based features capture temporal information and variations of a speech sig-
nal which are important factors in SER. Some of the vital features for emotion
recognition are prosody, timing and the rhythm of speech, and non-verbal cues,
such as breathiness, which are captured by the phase-based features. Fig 7.1 rep-
resents the Mel-spectrogram, spectrogram, and group-delay-gram of male and
female speakers for anger, happy, sad, and neutral emotions. The formant reso-

Figure 7.1: Panel-A and Panel-B Represent Plots for Male and Female Speakers,
Respectively. (i), (ii), and (iii) Represents Mel spectrogram, Spectrogram, and
Group-delayGram. (a), (b), and (c) Represents Anger, Happy, Sad, and Neutral
Emotions, Respectively.

lution in Mel-spectrogram at lower frequencies is good but as we move towards
higher frequencies, we can see the resolution getting poorer. It can be observed
from the plots that the fine structure of the formants that can be observed in the
magnitude spectrum (Panel-A) can also be seen in the spectrogram obtained by
the modified group delay spectrum. Hence, there is no information loss, while
using phase-based cepstral coefficients. This is due to the fact that the denomina-
tor term at the formant frequencies becomes 0 (as the pole radius approaches the
unit circle in the Z-plane) resulting in peaks that give higher-resolution formants.
Additionally, phase features are able to capture irregularities in the speech signal.
The presence of turbulence in a speech signal changes with emotion and these ir-
regularities are captured better through phase features rather than the magnitude
spectrum.
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7.3 Experimental Result

7.3.1 Parameter Tuning of Modified Group Delay Function

MGDCC involves two constraint parameters, alpha (α), and gamma (γ). The pa-
rameters are fine-tuned using a greedy search algorithm i.e., the performance is
optimized wrt the performance of SER. The parameters are varied from 0 to 1
with a step size of 0.1. The evaluation is done based on the test scores of the CNN
classifier. The best test accuracy is achieved at parameter values of α = 0.1 and γ

= 0.1, resulting in an accuracy of 79.49 %. The effect of parameters can be seen in
Fig 7.2.

Figure 7.2: Tuning Parameters α and γ using Greedy Search Technique for Emo-
tion Recognition.

7.3.2 Results for Emotion Recognition

The MGDCC feature outperforms the magnitude-based features, MFCC and LFCC
by a margin of 7.7 % and 5.14 %, respectively. The reason behind LFCC outper-
forming MFCC might be because of the importance of higher frequency infor-
mation for certain emotions such as anger and happy. These emotions contain a
higher pitch leading to formants occurring at a higher frequency. The resolution
of the LFCC feature is better than the MFCC features at higher frequencies. This
might be because of the high-resolution property of the modified group delay
function. The MGDCC outperforms all the features due to its ability to capture
the formants with high resolution at low and higher frequencies. However, GDCC
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fails to achieve similar performance. This is because of the noisy structure result-
ing from the GDCC occurring from the presence of zeros close to or outside the
unit circle in the Z-plane. These spikes cause formant masking and also hamper
speech intelligibility, thereby making it difficult to obtain valuable features for the
classification task.

Table 7.1: Accuracy of EMO-DB Dataset using CNN Classifier.

Features Test Acc.
MFCC 71.19
LFCC 74.35
GDCC 56.41
MGDCC 79.49

7.3.3 Results under Signal Degradation Conditions

The robustness of the proposed features is tested using various noise types, such
as white, pink, babble, and street noise with SNR levels of -10 dB, -5 dB, 0 dB,
5 dB, 10 dB, and 15 dB. When we consider additive white noise for evaluation,
due to the nature of AWGN, the noise is distributed across all the bands of fre-
quency. From Table 2, at the low SNR levels, MGDCC clearly outperforms both
the magnitude-based features, MFCC and LFCC by a significant margin of 3.41
%, 10.25 %, respectively. Similarly, at higher SNR values, MGDCC outperforms
baseline features MFCC and LFCC by 17.95 %, 7.79 %, respectively. Consider-
ing that the signal is degraded by the pink noise, which has higher noise power
in lower frequencies rather than the higher frequencies, the MGDCC feature set
outperforms both MFCC and LFCC features. Additionally, when considered non-
stationary noises (noises which vary w.r.t time), such as street noise or traffic noise,
and babble noise are considered. The MGDCC noise robustness is observed in any
kind of noise. These results indicate that the performance of the baseline features
is degraded in the presence of stationary and non-stationary noise, whereas the
performance of MGDCC remains intact across various noise types.

These results illustrate the additive noise robustness property, and also that
the group delay spectrum is known to emphasize the signal spectrum rather than
the noise spectrum. It can also be explained by the fact that the MGDCC feature
set pushes the zeros into the unit circle (in the Z-plane) in an attempt of making
the signal a minimum phase, which may also help in the suppression of noise.
Additionally, it can be noted that LFCC and MFCC are not equally robust in white
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Table 7.2: % Accuracy for Various Noise Types Across Various SNR Values using
CNN Classifier on EMO-DB Dataset.

Noise Type Feature Set SNR Level(dB)
-10 -5 0 5 10 15

MFCC 69.23 76.92 74.35 43.58 82.05 43.58
LFCC 71.79 64.10 64.10 58.97 71.79 69.23White

MGDCC 76.92 79.48 74.35 71.79 76.92 74.35
MFCC 41.79 38.46 41.02 43.58 70.35 71.79
LFCC 71.79 66.66 66.66 61.53 71.79 71.79Pink

MGDCC 74.35 69.23 71.79 71.79 71.79 74.35
MFCC 74.35 76 76.92 79.48 88.48 82.05
LFCC 74.35 70.23 79.48 71.79 76.92 79.48Street

MGDCC 75.53 80 81.66 81.66 71.79 86.66
MFCC 74.35 76 79.48 79.48 79.48 79.48
LFCC 61.53 66.66 79.48 76.92 79.48 79.48Babble

MGDCC 79.48 81.29 82.05 81.66 81.66 82.66

Figure 7.3: Performance of Features at Low SNR Values using CNN Classifier.

noise as the energy in higher frequency speech regions is weak making it more
susceptible to noise corruption. The LFCC contains more subband filters at higher
frequencies than MFCC, making it less robust to white noise. As the noise power
decreases, the LFCC feature set still outperforms MFCC due to its linearly-spaced
subband filters instead of the Mel filterbank. This reasoning also explains the
comparable performance of MFCC to LFCC, when the signal is corrupted with
pink noise.

7.3.4 Analysis of Latency Period

In this thesis, we investigated the latency period of the MGDCC feature set in
comparison to the baseline features, i.e., MFCC and LFCC. To evaluate the per-
formance of CNN based on different feature sets, we measured the accuracy %
wrt the latency period, as depicted in Fig.7.4. The latency period denotes the time
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elapsed between the utterance of speech and the system’s response, expressed as
a percentage fold accuracy that represents the number of frames utilized for utter-
ance classification. Therefore, if the system demonstrates superior performance at

Figure 7.4: Analysis of Latency Period for Various Feature Sets using CNN Clas-
sifier.

lower latency periods, it implies that it can classify the speech utterance effectively
without requiring a prolonged duration of speech. The duration of utterance is up
to 3 sec and is plotted at an interval of 0.5 sec. It is observed that MGDCC features
give significant classification performance throughout, the highest accuracy being
79.48 % at 1.5 sec. On the contrary, the baseline features constantly down-perform
and for MFCC, it takes a longer duration to achieve comparable performance.
This encourages the practical suitability of the proposed MGDCC feature set.

7.3.5 Chapter Summary

In this study, phase-based vocal tract system features were proposed for the SER
task. Other state-of-the-art spectral features MFCC and LFCC were used for com-
parison. The objective was to capture the irregularities in the speech signal and
the formant structure better for efficient SER. MGDCC also proved to perform
well for stationary and non-stationary noise-added datasets due to its additive
noise robustness property. The significance of linear filterbanks over Mel filter-
banks was observed for SER. The practical suitability of MGDCC was also cal-
culated and promising results were seen. The next chapter showcases the appli-
cation of MGDCC features for voice liveness detection (VLD) through pop noise
detection.
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CHAPTER 8

Modified Group Delay Features For POP Noise
Detection

8.1 Introduction

Automatic Speaker Verification (ASV) systems play a crucial role in security sys-
tems. However, these systems are susceptible to various spoofing attacks, includ-
ing the playback of pre-recorded or synthetic speech. To mitigate such vulnerabil-
ities, this paper explores the utilization of pop noise analysis as a feature in voice-
liveness detection algorithms. Pop noises, short-duration acoustic disturbances,
often occur during the production or recording of live speech but are absent or dif-
ferent in pre-recorded or synthetic speech. Leveraging the unique temporal and
spectral characteristics of pop noises, we propose incorporating them as discrim-
inative cues for voice liveness detection. By analyzing the occurrence, duration,
and timing of pop noises within the speech signal, the system can differentiate
live speech from spoofed or synthetic speech. In this study, we propose the detec-
tion of pop noise using the phase-based feature, Modified Group Delay Cepstral
Coefficients (MGDCC). The key idea behind employing MGDCC features is that
pop noise being breath sounds, create irregularities in the speech signal and use to
capture these irregularities via phase-based MGDCC features. The proposed fea-
ture is compared against the baseline features, namely, Mel Frequency Cepstral
Coefficients (MFCC) and Linear Frequency Cepstral Coefficients (LFCC). All the
mentioned features are evaluated by keeping a window size of 25 ms and a hop
length of 10 ms, Fmin = 40 Hz, and octave resolution of 14. The experiments are
performed on the training data of the POCO dataset using CNN as a classifier. The
results are evaluated using 5 -Fold CV accuracy scores. Furthermore, the practi-
cality of the proposed feature set is checked using latency period analysis. The
results indicate that the proposed features outperform both the baseline features
by a large margin indicating its ability to capture the energy in lower frequencies.
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8.2 Motivation of Phase-Based Features for VLD

Row (a) of Fig 8.3 represents genuine speech that contains pop noise and (b) rep-
resents spoofed speech or recorded speech which does not contain pop noise for
the word "chip". From the time domain plot, we can see the pop noise occurring
at the end of the utterance of the word. In general, the pop noise occurs at lower
frequencies as same as the VOT energy seen in previous chapters.

Figure 8.1: (a) and (b) Represents Plots for Genuine and Spoof Speech for the
Word "chip". (I), (ii), (iii), and (iv) Shows the Time-Domain, Mel-Spectrogram,
STFT-Spectrogram, and Group-Delaygram, Respectively.

Since MGDCC was able to capture the information of VOT for control and
dysarthric speakers, it motivated to use the phase-based MGDCC features for the
pop noise detection task. One main differentiating feature across MEL-spectrogram,
spectrogram, and group-delaygram is the presence of additional energy at lower
frequencies in both genuine and spoofed speech which is absent in the group-
delaygram. This might be crucial because the presence of additional energy at
lower frequencies might mask the pop noise information which is not possible in
the MGDCC features.

8.3 Experimental Results

8.3.1 Parameter Tuning of Modified Group Delay Function

MGDCC involves two constraint parameters, alpha (α), and gamma (γ). The pa-
rameters are fine-tuned using a greedy search algorithm i.e., the parameters are
optimized wrt the performance of the VLD system. The parameters are varied
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from 0 to 1 with a step size of 0.1. The evaluation is done based on the fold CV
scores using CNN classifier. The best fold accuracy of 88.28 % is achieved for the
parameters α = 0.22 and γ = 0.09, respectively.

Figure 8.2: Parameter Tuning of α and γ Using Greedy Search Algorithm for Pop-
Noise Detection.

8.3.2 Results for POP Noise Detection

From Table 8.1, it can be observed that the MGDCC outperforms the baseline
magnitude-based features (MFCC and LFCC) by a margin of 36.07 % and 20.63
%, respectively. Hence, the phase-based cepstral features capture crucial infor-
mation about the formant structure that aids in the classification. Among the
baseline features, LFCC outperforms MFCC, which acts as a solid proof for the
spectrographic analysis. Since the spectrograms are resulting in unwanted low
frequency energies, which mask the pop noise information, MFCC performance
drops heavily due to its good low-frequency resolution making the noisy energy
much larger. On the other hand, traditional group delay function features do not

Table 8.1: % Accuracy of MGDCC on POCO Dataset using CNN Classifier.

Features Test Acc.
MFCC 52.51
LFCC 67.64
GDCC 60.75
MGDCC 88.28

fare well. This is due to large spikes produced by the mixed-phase signals, such as
speech. The presence of significant spikes in the group delay spectrum obscures
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the formant information, thereby rendering these features less informative for the
pattern classifier.

8.4 Analysis of Latency Period

In this chapter, we investigated the latency period of the MGDCC feature set in
comparison to the baseline features, i.e., MFCC and LFCC. To evaluate the per-
formance of CNN based on different feature sets, we measured the accuracy %
wrt the latency period, as depicted in Fig.7.4. The latency period denotes the time
elapsed between the utterance of speech and the system’s response, expressed as
a percentage fold accuracy that represents the number of frames utilized for utter-
ance classification. Therefore, if the system demonstrates superior performance at

Figure 8.3: Latency Period Analysis of Pop Noise Detection using CNN Classifier.

lower latency periods, it implies that it can classify the speech utterance effec-
tively without requiring a prolonged duration of speech. From the plot, it can be
observed that the MGDCC achieves the maximum accuracy with 120 frames or
300 ms speech sample. The MFCC and LFCC fail to achieve a saturation point.
This experiment indicates the practicality of the proposed feature set.

8.5 Chapter Summary

This chapter discusses the application of MGDCC for pop noise detection, which
is used for Voice Liveness Detection (VLD) tasks. The experiments are performed
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on a subset of the POCO dataset and are evaluated using CNN classifier and a
5-fold cross-validation accuracy as the metric. The experiments proved that the
phase-based features capture the formant information with a better resolution,
when compared with magnitude-based (MFCC and LFCC) features. To test the
practicality of the proposed feature set, the latency period analysis is performed.
The next chapter proposes a novel technique of time-averaging features for infant
cry classification task.
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CHAPTER 9

Time-Averaged Features for Infant Cry Clas-
sification

9.1 Introduction

This chapter explores the effect of time-averaged features on the infant cry classi-
fication. The infant cry classification is a very relevant problem. The only way an
infant can communicate is cry. The feature vectors Mel Frequency Cepstral Coef-
ficients (MFCC) and Linear Frequency Cepstral Coefficients (LFCC) derived from
STFT are used in this work. In this work, time-averaging is applied to the feature
sets at various window sizes and is evaluated using machine learning classifiers
which are Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Ran-
dom Forest (RF). The experiments are performed using Repeat Fold Cross Vali-
dation on the Baby Chillanto dataset using various features vectors. This method
managed to achieve a high accuracy using simple machine learning classifiers.

9.2 Motivation

The cry signal considered in the dataset is samples of 1 second long. Consider-
ing the limited examples of the dataset and computational power required for the
deep learning classifiers, the time averaging method is proposed. The proposed
method achieves higher accuracy while using simple machine learning classifiers.
The variations across the time-axis for a cry are minimal, when compared with
adult speech, which contains many acoustic features while spelling out a word.
The only changes in a baby cry would be the breathing pattern and the pitch,
which are captured across the spectral-axis. Therefore, the features undergo time
axis averaging, resulting in a reduction to 1-D. Figure 9.1, specifically Panel-I and
Panel-II, presents the features generated using Librosa [47] for normal and patho-
logical infant cries. This representation effectively captures the log magnitude
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spectrum as Fourier transforms of cepstrum [18]. In Figure 9.1(a), static MFCC
representations are depicted, while Figure 9.1(b) showcases dynamic MFCC rep-
resentations. Additionally, Figure 9.1(c) illustrates the LFCC representations, and
Figure 9.1(d) represents the cepstral coefficient representations.

Observing Figure 9.1(a) and Figure 9.1(b), it becomes evident that there are dis-
cernible differences in F0 and its harmonics among the classes of infant cry signals.
The noticeable differences are also seen in LFCC features, as shown in Figure 2(c).
However, the disparities are more pronounced in the dynamic MFCC representa-
tions compared to the static MFCC and LFCC representations. This observation
can be attributed to the dynamic MFCC’s ability to provide discriminative fea-
tures across the entire frequency band. Furthermore, the results obtained through
10-fold cross-validation support the notion that dynamic MFCC yields the high-
est classification accuracy in this study. However, it should be noted that dynamic
MFCC also contains redundant information when compared to static MFCC. As
a result, the average accuracy of static MFCC exceeds that of dynamic MFCC. On
the other hand, the features captured by cepstral coefficients (CC) lack sufficient
discriminative power, making it challenging for classifiers to classify using these
features.

9.3 Experimental Results

9.3.1 Parameter Tuning of Machine Learning Models

The parameters are tuned using a grid search algorithm with an accuracy metric.
Table 9.1 shows the best parameters for all the machine learning classifiers used
in this chapter.

Table 9.1: Parameter Tuning of Classifiers. After [67].

Classifier Parameters Static
MFCC

Dynamic
MFCC LFCC CC

KNN # Neighbors 3 3 3 3
SVM C 0.1 1 10 100

RF
Max_depth 20 50 10 50
Sample_leaf 1 1 1 1
Estimators 300 150 300 150
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Figure 9.1: The Normal and Pathology Infant Cry Analysis are Shown in Panel-I
and Panel-II. Fig. 9.1(a) Shows the Static MFCC Features, Fig. 9.1(b) Shows the
Dynamic MFCCs, Fig. 9.1(c) shows the LFCC Features, and Fig. 9.1(d) Represents
the Cepstral Coefficient Representations. After [67].

9.3.2 Results for Infant Cry Classification

The results are evaluated using Repeat Fold CV Technique. The static and dy-
namic coefficients of MFCC performed similarly resulting in an average accuracy
across all the classifiers of 95.22 % and 93.71 %. The dynamic MFCC features
can act as redundant-based features indicating it can decrease the performance of
some classifiers, like SVM with a soft margin [12]. Overall, the dynamic MFCC
capture the temporal trajectory of MFCC by incorporating velocity and acceler-
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ation coefficients. Consequently, the inclusion of these dynamic MFCC features
in the feature vector can introduce redundancies that may negatively impact the
performance of classifiers.

The mean accuracy of LFCCs averaged over folds is 94.17 %. LFCCs utilize
a linear filterbank, which results in better resolution at higher frequencies com-
pared to the logarithmic resolution of MFCCs at higher frequencies. The average
accuracy of the LFCC feature vector across all classifiers is higher than that of dy-
namic MFCCs but lower than that of static MFCCs. This suggests that the higher
frequencies contain significant information and cannot be disregarded. The av-
erage accuracy of MFCC indicates that the lower frequency information which
generally consists of the breathing information is also equally important. The re-
sults also highlight the impact of redundancy on the accuracy of dynamic features
when compared to static MFCCs and LFCCs. The cepstral coefficient feature vec-
tor exhibits the lowest classification accuracy since it lacks the filterbanks present
in MFCCs and LFCCs feature sets.

When it comes to the classifiers, each of them handles redundant data differ-
ently, as their classification techniques vary. The SVM classifier utilizes a linear
kernel’s decision boundary to classify between classes. In contrast, the KNN clas-
sifier applies a clustering concept by assigning a label based on the majority vote
of its neighbours. The RF classifier assigns a label based on the majority vote
from all the decision trees’ outputs. Consequently, the performance of certain
classifiers decreases when transitioning from a static MFCC to a dynamic MFCC
feature vector, while others remain unaffected.

The performance of the SVM classifier using a linear kernel depends greatly on
the effectiveness of feature extraction. In cases where feature extraction is not exe-
cuted properly, the classification results tend to be unsatisfactory. This classifier is
notably sensitive to redundant data. In contrast, the KNN classifier heavily relies
on accurately extracted features and employs a clustering technique for classifica-
tion. Therefore, when feature extraction is carried out correctly, KNN surpasses
the linear SVM in performance. This is due to KNN’s clustering-based classifica-
tion, which renders the linear decision boundary ineffective, as evidenced by the
results.

When comparing classifiers, the Random Forest (RF) classifier strives to out-
perform both the SVM and KNN classifiers across various feature extraction tech-
niques. It achieves higher classification accuracy across all feature vectors by in-
tegrating multiple uncorrelated decision trees. As the number of decision trees
increases, the RF classifier’s ability to make accurate predictions also improves.
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However, handling redundant data poses a challenge for the RF classifier, as the
importance score can potentially lead the model astray.

The mean classification accuracy of the KNN classifier across all feature ex-
traction techniques is 89.42 %. The optimal number of neighbours for the KNN
classifier, determined through grid search, is 3, resulting in the best performance.
On the other hand, the average classification accuracy of the Random Forest (RF)
classifier across all feature extraction techniques is 90.29 %. The parameters, in-
cluding maximum depth, minimum sample leaf, and the number of estimators,
are fine-tuned using a grid search algorithm. They are set to 20, 1, and 300, re-
spectively, achieving the best overall accuracy of 98.27 %.

In contrast, the SVM classifier with a linear kernel demonstrates an average
classification accuracy of 78.82

By examining Table 9.2 and Table 9.3, the impact of window size (20ms and
55ms) on the accuracy. When the window size is increased, the temporal resolu-
tion decreases while the resolution in the frequency domain increases. Therefore,
as we raise the window size from 20 ms to 55 ms, we notice an improvement in
accuracy across the classifiers. This suggests that temporal information can be
deemed less crucial in comparison.

Table 9.2: Accuracy for featured with a window size of 20 ms. Average Accuracy
across Rows Indicate the Classifier Accuracy and Across Column Indicate Feature
Accuracy. After [67].

Model Static MFCC Dynamic MFCC LFCC CC Average acc.
KNN 97.98 98.38 96.74 61.28 88.59

RF 97.66 96.49 96.78 67.98 89.72
SVM linear 86.91 86.99 87.67 58.30 79.96
Average acc. 94.18 93.95 93.73 62.52

Table 9.3: Accuracy for features with a window size of 55 ms. Average Accuracy
across Rows Indicate the Classifier Accuracy and Across Column Indicate Feature
Accuracy. After [67].

Model Static MFCC Dynamic MFCC LFCC CC Average acc.
KNN 98.42 98.48 97.50 63.30 89.42

RF 97.92 96.61 97.27 69.37 90.29
SVM linear 85.44 86.07 87.75 56.05 78.82
Average acc. 93.92 93.72 94.17 62.90

Due to the relatively low significance of temporal information in distinguish-
ing between normal and pathological cries, an approach was employed where the
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Figure 9.2: Accuracy of features with window size 55 ms. After [67].

Figure 9.3: False positive (FP) of various feature vectors of window size 55 ms.

temporal axis of the matrix generated by the feature extraction technique was av-
eraged, resulting in a conversion to a 1-D vector. The obtained results demonstrate
that there is minimal loss of information, as indicated by the Repeat-stratified 10-
fold accuracy of 98.48 %. This reduction in information loss also contributes to
reducing the computational complexity when using these features in classifiers
or deep learning architectures. Another important objective is to minimize false
positive occurrences, which is particularly crucial in realistic scenarios where mis-
classifying pathological cries as normal is undesirable. This objective is consis-
tently achieved when using static Mel Frequency Cepstral Coefficients (MFCC)
feature vectors across all three classifiers. The most favourable outcomes are ob-
served when employing dynamic MFCC feature extraction in combination with
K-Nearest Neighbors (KNN) and Random Forest (RF) classifiers, as illustrated in
Figure 9.3.2 and Table 9.4.

The outcomes demonstrate that each machine learning classifier manages re-
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Table 9.4: Confusion Matrix of the Best Feature (Dynamic MFCC). After [67].
Classifiers Classes Normal Class Pathology Class

KNN Normal 300 4
Pathology 5 370

RF Normal 290 15
Pathology 2 380

SVM Normal 260 43
Pathology 61 320

dundant information in its own unique manner. Nevertheless, it is important to
acknowledge that the gradient time-averaged feature vector inherently encom-
passes dynamic information. This is achieved through the concatenation of static
features, delta features, and delta-delta features.

9.4 Chapter Summary

In this chapter, we observed the effect of time averaging on various feature sets.
The evaluation of the features is performed using various window sizes. The
time-averaged features resulted in a maximum accuracy of 98.48 % which is com-
parable with state-of-the-art deep learning classifiers. This work indicates that the
frequency plane of an infant cry contains more discriminative information than
the temporal plane Furthermore, a noteworthy observation was made regarding
the relative abundance of information in lower frequencies compared to higher
frequencies. In the next chapter, a novel application of music-based harmonic
and pitch features extracted from CQT is applied to the infant cry classification
problem while considering the cry signal to be a melodic (a prosodic characteris-
tic) signal.
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CHAPTER 10

Constant-Q Based Pitch and Harmonic Features
for Infant Cry Classification

10.1 Introduction

The classification of normal vs. pathological infant cry sample is itself a chal-
lenging problem due to the limited amount of data and the uncontrollability of
the speaker. Many state-of-the-art feature sets, such as MFCC, LFCC, and CQCC
have been used for this task. The MFCC is called a state-of-the-art feature set
due to its high performance for the normal vs. pathology classification of infant
cry. However, an effective representation of the spectral and pitch components
of a spectrum together is not achieved leaving scope for improvement. Also,
the infant cry can be considered a melodic sound implying that the fundamen-
tal frequency and timbre-based features also carry vital information. This work
proposes Constant Q Harmonic Coefficients (CQHC), and Constant Q Pitch Co-
efficients (CQPC) extracted by the decomposition of the Constant Q Transform
(CQT) spectrum for the infant cry classification. This work uses Convolutional
Neural Network (CNN) as the classifier along with traditional classifiers, namely,
Gaussian Mixture Models (GMM), and Support Vector Machines (SVM). The re-
sults are compared by considering the MFCC, LFCC, and CQCC feature sets as
the baseline features. Additionally, the effect of the log is observed on the pro-
posed feature sets. The results show that the feature-level fusion of CQT-based
CQHC and CQPC features outperforms the baseline features by a considerable
margin. All the mentioned features are evaluated by keeping a window size of
25 ms and a hop length of 10 ms, Fmin = 100 Hz, and octave resolution of 14. All
the features were extracted using librosa toolkit [47]. The Baby Chillanto dataset
is used in this work. Out of the entire dataset, 80 % is used for training and the
rest of the data is used for testing the model.
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10.2 Proposed Features

10.2.1 Constant-Q Harmonic Coefficients (CQHC)

The logarithmic resolution in the CQT spectrogram enables harmonic frequencies
to exhibit a consistent arrangement in the frequency-domain, maintaining their
relative positions with respect to the fundamental frequency (F0) in an unchanging
manner [71]. As the harmonics are the spectral coefficients carrying the spectral
information of the signal, they can be used in the timbre characterization of the
signal, where timbre can be defined as the quality of the sound produced. Given
the pitch can be normalized, the locations of harmonics can be obtained and their
energies be calculated leading to an efficient timbre feature set.

To achieve pitch normalization, it is assumed that the CQT spectrum can be
represented as a convolution of two components: a pitch-normalized spectral
component and an energy-normalized pitch component. This assumption allows
for compensating pitch variations and enables more accurate comparisons and
analyses of musical content, as demonstrated in Eq.10.1 [71]:

A = B ∗ C, (10.1)

where A represents the CQT spectrum, B represents the pitch-normalized spec-
tral component, C represents the energy-normalized pitch component, and from
the property that the magnitude is shift-invariant, the spectral component can be
approximated by the magnitude of the CQT spectrum. The IFFT of the above
approximation gives the estimate of the spectral component as stated in Eq 10.2
[71]:

B = F−1(|F (A)|), (10.2)

where F−1 represents the inverse Fourier transform function. Given the octave
resolution considered for the calculation of CQT, we can obtain the positions of
harmonics in the spectral component and then extract the harmonic coefficients.
The coefficients from the spectral component are obtained by [71]:

i = round(Oclog2(k)), (10.3)

CQHCk = B(i), (10.4)

where k takes the value between 1 and Nc, Oc is the octave resolution and Nc is the
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number of desired coefficients. The CQHC captures the harmonics information
of the speech signal embedded in the CQT spectrum. In this work, along with
CQHC, additionally, logarithmic CQHC is also considered.

10.2.2 Constant-Q Pitch Coefficients (CQPC)

The CQT spectrum decomposition also yields an energy-normalized pitch com-
ponent, which means that F0, and the first few formants are encoded within the
pitch component, preserving the relevant information. The pitch component is
calculated as [71] :

C = F−1(ejarg(F (A)). (10.5)

where F−1representstheInverseFouriertrans f orm.Furthermore, thecoe f f icients f orthepitchcomponentareobtainedinasimilarmannershowninEq10.3, andEq10.4, wherethespectralcomponentisreplacedbythepitchcomponent.Algorithm1speci f iesthepseudocode f orthe f eatureextractiono f CQHCandCQPC f eatures.Inaddition, logarithmCQPCisalsoconsidered.

10.3 Motivation of Harmonic and Pitch Coefficients

for Infant Cry

the infant cry can be considered a melodic sound or prosodic characteristics im-
plying that the fundamental frequency (F0) and timbre-based features also carry
vital information. Figure 10.1 represents the CQT-gram analysis of normal vs. as-
phyxia vs. deaf cries. From Panel III of figure 10.1, it can be observed that the
pitch component of a normal cry is found to have a continuous contour plot (F0

contour), however, it is seen to be discontinuous for the pathology cry. Further-
more, it is observed that the pitch component of pathology cries occurs at higher
frequencies than the pitch component of the normal infant cry. These observations
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make the pitch component a vital differentiating factor for normal vs. pathology
infant cry. However, the CQPC component does not contain the formant informa-
tion. Panel II of figure 10.1 represents the spectral component of infant cries. For
pathological cries, the harmonic structures are found to be smeared, when com-
pared with the normal infant cry. Due to the pitch normalization of the harmonics,
the resolution of the harmonic component decreases. This makes the harmonic
component a poor choice when considered alone.

Figure 10.1: Panel I, Panel II, and Panel III Depicts CQT-gram, Spectral Compo-
nent, and Pitch Component, Respectively for (a) Normal Cry, (b) Asphyxia, and
(c) Deaf Cries. Best viewed in colour. After [68].

10.4 Experimental Results

10.4.1 Results for Baseline Features

The accuracy obtained using baseline features is reported in Table 10.1. It can be
seen that the maximum 5-fold accuracy of 96.95 % is achieved using the MFCC
on the CNN classifier with a test accuracy of 98.24 %. Further, it can be seen that
traditional classifiers such as GMM give an accuracy of 99.69 % and SVM gives
an accuracy of 86.21 % for the MFCC feature set. The MFCC results in the highest
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accuracy of 96.95 % as it contains generalized timbre information and pitch infor-
mation [71]. It should also be noted that the introduction of the Mel scale features
is primarily aimed at the musical signals [71] and since the infant cry can be con-
sidered as a melodic signal, the Mel scaled features outperforms the linear-scaled
features.

Table 10.1: Results for Baseline Features for Infant Cry Classification. After [68].

Features CNN 5-Fold
Accuracy

CNN Test
Accuracy GMM SVM

MFCC 96.95 97.88 99.69 86.21
LFCC 94.42 96.47 99.16 84.76
CQCC 93.27 93.00 95.44 83.12

10.4.2 Results for Proposed Feature Sets

The CQT feature set resulted in an accuracy of 90.32 % as shown in Table 10.2.
The CQHC and CQPC feature sets, which are obtained by decomposing the CQT
spectrum resulted in accuracies of 80.85 % and 83.47 %, respectively. This result
indicates the importance of the pitch component for the infant cry classification,
which is captured by the CQPC feature set. This might be due to the fact that
the pathology cry contains irregular breathing patterns, which are caused due to
affected vocal folds, and it is known that the fundamental frequency (F0) is tied
to the rate of vocal fold vibration [22]. Hence, the F0 or the pitch component con-
tains differential cues of the cry, which is vital for the classification task of normal
vs. pathology cry. This result also indicates the fact that infant cries exhibit rich
melodic features i.e., variation of fundamental frequency w.r.t time [93]. On the
other hand, the CQHC feature set, which is extracted by normalizing the spectrum
w.r.t F0 fails to perform when compared with the CQPC feature set indicating the
timbre information alone does not carry differentiating factors for the normal and
pathological infant cry. However, neither the harmonics component nor the pitch
component alone is resulting in accuracy higher than the CQT feature set. These
results can be supported by the spectrographic analysis performed in the previ-
ous subsection. Furthermore, the effect of the logarithm applied to the feature
sets was investigated. The application of a logarithm on any spectrum helps to
increase the resolution of the spectrum. It can be observed from Table 10.2 that
the effect of the log is negligible in the case of CQPC as the increase of resolution
of the energy normalized pitch component doesn’t add much information com-
pared to the spectral component which contains the information of the harmonics,
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that is normalized to the lowest frequency. Similar conclusions can be drawn from
the results obtained using traditional classifiers. The SVM is the least-performing
classifier which might be because of its inability to deal with mapping features
that are not linearly separable in lower dimensional feature space into linearly
separable higher dimensional feature space, where they become linearly separa-
ble.

Table 10.2: Accuracy of CQT, CQHC, and CQPC for Infant Cry Classification.
After [68].

Feature Set CNN 5-Fold
Accuracy

CNN Test
Accuracy GMM SVM

CQT 90.32 87.12 90.7 70.62
CQHC 80.85 82.00 85.77 64.49
CQPC 83.47 85.18 89.6 62.59

Log CQHC 90.70 91.12 90.22 77.27
Log CQPC 91.24 92.12 93.61 80.31

10.4.3 Results for Feature-Level Fusion of Various Feature Sets

This sub-Section discusses the results obtained from the feature-level fusion of
MFCC, CQHC, CQT, and CQPC feature sets. This fusion is the concatenation of
various feature sets extracted in different ways into a single feature set. The fusion
of CQHC and CQPC outperforms the CQT feature set indicating that providing
the pitch component separately results in a better performance. This result states
that feeding the F0 contour information separately along with harmonic informa-
tion results in a better accuracy as can be seen from Figure 10.1. The addition of log
to the fusion of CQHC and CQPC performs comparably with the MFCC feature
and outperforms LFCC and CQCC features. MFCC manages to capture general-
ized timbre information in it along with the pitch information [71]. The infant cry
can be considered a melodic sound due to the continuous variations in the pitch
of the cry. The timbre information provides the colour for the melodic sounds.
Hence, both CQHC and MFCC capture the timbre information in a unique way.
The fusion of MFCC and log-CQHC features beat the baseline MFCC feature set
by 1.78 %. This indicates that the harmonic features of the CQT spectrum carry
additional information when compared with the generalized harmonic features
captured by MFCC. Furthermore, the feature-level fusion of MFCC and log-CQPC
feature set results in an improvement in the accuracy of 2.01%, when compared
with baseline MFCC features indicating that the additional pitch information is
important in the infant cry classification task. The fusion of MFCC with log CQPC
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and the fusion of MFCC with log-CQPC and log-CQHC managed to beat the base-
line MFCC resulting in an absolute improvement of 3 % in accuracy. This shows
that the CQHC consists of unique information obtained from the CQT spectrum,
which the MFCC fails to capture. It also indicates the inability of the MFCC fea-
ture set to capture the pitch component, when compared to the CQPC feature set.
Hence fusion of the MFCC feature set with the CQT decomposed features (CQHC
and CQPC) resulted in a noticeable amount of increase in accuracy, which can also
be observed in the traditional classifiers.

Table 10.3: Accuracy of Various Feature-Level Fusion of Features for Infant Cry
Classification. After [68].

Feature Set CNN 5-Fold
Accuracy

CNN Test
Accurcy GMM SVM

CQHC+CQPC 91.92 94.17 93.26 70.66
Log CQHC+
Log CQPC 95.35 94.70 97.53 84.32

MFCC+Log CQHC 98.73 99.29 99.34 89.91
MFCC+Log CQPC 98.96 99.47 99.52 91.63
MFCC+Log CQT 98.45 99.47 99.52 86.48

MFCC+LOG CQHC+
LOG CQPC 99.12 99.47 98.81 92.47

10.4.4 Statistical Analysis of Proposed Features

Figure 10.2: Analysis of statistical significance via violin plots for various feature
sets. After [68].

The statistical significance of results is shown using stratified k-fold cross-
validation to ensure similar data distribution in each fold. 5-fold CV is performed
50 times to get violin plots as shown in Fig. 10.2, which shows relatively higher
mean and median than the existing features for the proposed features. It is ob-
served that the mean and median are relatively higher for the proposed features
indicating the statistical significance of the results.
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10.5 Chapter Summary

This chapter discusses the importance of harmonic and pitch information in the
infant cry signal. A unique approach is introduced in this study, where the ap-
plication of CQHC and CQPC features is proposed for classifying infant cries.
It is observed that the pitch component extracted through CQPC feature outper-
forms the baseline features (MFCC and LFCC). Furthermore, the effect of the log-
arithm function on the feature sets is observed. Finally, the statistical significance
is shown through the violin plots. The next chapter concludes this thesis work
and provides a brief summary of the work covered, and potential future research
directions.
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CHAPTER 11

Summary and Conclusion

11.1 Summary

This thesis is focused on the development of effective signal processing techniques
and features for various speech-based problems, such as dysarthric severity-levels
classification, infant cry classification, emotion recognition, and voice liveness de-
tection. Furthermore, the thesis delved into the applicability of CQHC and CQPC
features for infant cry classification, as well as the effect of time-averaged fea-
tures for the same purpose. The utilization of phase-based group delay features
proved to be effective in classifying dysarthria severity-levels, recognizing emo-
tions, and detecting voice liveness. These features captured important temporal
characteristics of speech and vocalizations, which describe the speech production
system, allowing for accurate and meaningful classification across different tasks.
The proposed feature techniques are evaluated using various machine learning
and deep learning classifiers, such as K-Nearest Neighbor Classifier, Random
Forest Classifier, Support Vector Classifier, Gaussian Mixture Models, and Con-
volutional Neural Network. Furthermore, the thesis evaluated the performance
of the classification models using metrics, such as accuracy, precision, recall, and
F1 score. The application of 5-fold cross-validation ensured a robust evaluation
process, providing reliable and unbiased measures of the model’s performance.
These metrics served as indicators of the model’s accuracy and effectiveness, aid-
ing in the assessment of its suitability for real-world applications.

Furthermore, the thesis explored the application of CQHC and CQPC fea-
tures for infant cry classification. These features offered unique insights, when
the infant cry is considered a melodic signal. The importance of pitch features
is observed for the infant cry problem. Additionally, the investigation of time-
averaged features for infant cry classification provided valuable insights into how
little amount of information is captured along the temporal-axis. It is observed
that the time averaging resulted in a minimal information loss and enabled to use
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of less computationally expensive machine learning classifiers while still able to
achieve high accuracies.

11.2 Limitations of Current Work

Although the proposed features resulted in a remarkable accuracy results across
all the problem statements considered in the thesis work, the following are some
limitations of the proposed work:

• Even though the cross-database analysis provides insights into the speaker
independency of the model, the Leave One Speaker Out (LOSO) technique
on a single dataset provides us with a better understanding of the speaker
independency of the proposed feature set.

• Since the dataset used for emotion recognition is EMODB, which is based
on the German language, the results might not be generalized for other lan-
guages.

• Due to computational limitations, the experimentation for VLD is performed
only on a part of the entire dataset.

• The limited amount of speech samples and the limited categories available
for pathology cry is always an issue.

• Cross-database evaluation is not performed for the infant cry classification
problem due to a large imbalance among the available datasets.

11.3 Future Research Directions

• To overcome the challenge of limited datasets for the large deep learning
classifiers, various data augmentation techniques can be explored on the
available datasets to generate realistic speech samples. Data augmentation
can be explored using acoustic parameters and deep learning generative
models.

• Since dysarthric speech and emotional speech contains vital temporal infor-
mation, the use of sequential deep learning classifiers might result in the
improvement of the performance.

• A cross-database evaluation for infant cry classification and emotion recog-
nition among the balanced datasets.
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• This work showcases the dysarthric speech analysis for the adult speaker.
The same experimentation can be repeated for children speech disordered
datasets.

• Dysarthric speech enhancement can be explored by reconstructing the phase
as similar to that of the control speaker phase structure.

• The group delay features for the entire POCO dataset is yet to be explored.
Furthermore, the phase-based features for various spoof attacks in Auto-
matic Speaker Verification (ASV) can also be considered.

• The comparison between signal processing-based, acoustic-based features,
and deep learning features learned through the transfer learning method for
all the above problem statements might lead to an interesting study.
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