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Abstract

This thesis presents a hierarchical methodology for land degradation mapping,

land use land cover classification, degradation process identification and map-

ping using multispectral LISS-3 images. The study aims to demonstrate the im-

portance of remote-sensing images for various applications, both social and en-

vironmental. The study compares the results of different algorithms for different

terrains, demonstrating that Simple Linear Iterative Clustering (SLIC) segmenta-

tion with the random forest(RF) method outperforms CNN and pixel-based Sup-

port Vector Machine (SVM) with an accuracy of 85% for level 1 land cover clas-

sification. Vegetation degradation in forest areas is assessed in central parts of

Gujarat, India, and land degradation in agricultural areas due to soil salinity is

studied, particularly in southeastern parts of Gujarat, India. ML algorithms like

support vector machine(SVM) and RF was applied to different features to identify

the degradation process. Temporal data were used to find the severity of deserti-

fication using the change in degraded areas.

Further, it discusses soil degradation causing desertification and severely re-

ducing potential soil productivity. The study uses machine learning algorithms

and an ANN-based model to predict soil properties like EC, pH, and OC, which

are important indicators of soil degradation. Environmental parameters are taken

as covariates in prediction models, including vegetation indices, terrain indices,

soil parameters, spatial attributes, and meteorological parameters of the study re-

gion. Field soil sampling data of the study region obtained from Soil Health Card

(SHC) for the year 2014 is incorporated in training the model. The SHC data is

divided into different ratios for training and testing the model. The SCORPAN

model is considered the base approach for the development of the ANN-based

vii



prediction model. Moreover, the thesis also discusses the mapping of vulnera-

ble areas to desertification. The study combines remote sensing and geographic

information system (GIS) to map sensitive areas. Two different approaches were

used for vulnerability assessment: Mediterranean Desertification and Land Use

(MEDALUS) approach and the fuzzy logic (FL) method. Soil, climate, land uti-

lization, geography, and vegetation contribute to the land degradation of any

area. However, man’s intervention leads to significant changes in the environ-

ment, making socio-economic factors a considerable input to assess desertification

vulnerability. Indices related to these factors are generated, and both methods are

used to find the severity level of the desertification vulnerability in the Panchma-

hal district.

Lastly, the role of climate in the process of desertification is discussed. The

study uses the aridity index (AI), which incorporates most of the weather data

like temperature, rainfall, humidity, wind, and solar radiation, to identify the de-

sertification hot-spot using AI over the Gujarat state. The study uses weather

data from more than 18 locations all over Gujarat for the past 20 years to calcu-

late AI, and the FAO Penman-Monteith method was used to calculate PET. The

study generates an annual AI map for the whole of Gujarat using these values

and compares it with a globally published AI map. It also compares the change

in climate with the change in vegetation over the years using the vegetation in-

dex for Gujarat. In summary, this thesis provides a comprehensive approach to

land degradation mapping using degradation process identification, soil predic-

tion, and climate variable using geospatial technology and machine learning. The

study demonstrates the importance of remote sensing images in various applica-

tions, including social and environmental. The study employs different machine

learning algorithms and approaches to achieve high accuracy and identify vul-

nerable areas to desertification. The study also highlights the importance of soil

properties and climate in the process of desertification.
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CHAPTER 1

Introduction

"Land" signifies a complicated bio-productive system that contains soil, vegeta-

tion, ecological and hydrological processes, and other biota that work inside the

system[170].

"Land degradation" is the degradation or loss of the productive capacity of the

land, caused by human activities, such as deforestation, overgrazing, soil erosion,

and agricultural mismanagement. It results in the decline of soil fertility, reduced

biodiversity, and other negative impacts on the environment, as well as social

and economic consequences. Land degradation can have serious consequences

for food security, water availability, and human well-being, and can be a major

problem, particularly in arid and semi-arid areas[170].

The term "desertification" was first used by a French ecologist named Louis

Lavauden in his 1927 publication titled "La desertification de la France mérid-

ionale" (The desertification of southern France)[95]. However, Lavauden’s use

of the term referred to the expansion of desert-like conditions in areas that were

previously fertile, rather than solely the low productivity of rangelands.

Later, in the 1940s and 1950s, researchers began to use the term "desertifica-

tion" specifically to refer to the degradation of drylands and rangelands, which

were becoming increasingly arid and unproductive due to human activities such

as overgrazing, deforestation, and poor land management practices. Later the

term was utilized in 1949 by the French forester Aubreville, who used the term

to allude to the removal of tropical rain-forest by secondary savannah and scrub

in those areas of Africa where forestland was being burned and cleared to give

land for cultivation [12]. Glantz et.al.[64] in 1983 examined the meaning of deser-
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tification on a survey of more than 100 unique meanings of desertification taken

from the writing. Various definitions center around changes in soil (e.g. saliniza-

tion), vegetation (e.g. decreased biomass density), water (e.g. water-logging),

or air (e.g. expanded albedo). Regardless of the main focus, the majority of

them also describe changes in biological production while making observations

about the type of vegetation. According to the United Nations Environment Pro-

gramme (UNEP), desertification is "land degradation in arid, semi-arid, and dry

sub-humid environments arising from adverse human influence." The United Na-

tions Convention to Combat Desertification (UNCCD) backed the UNEP’s 1992

revision of the definition of desertification as "Land degradation in arid, semi-arid

and dry sub-humid areas arising from different sources, including climate fluctu-

ations and human activities." in 1994 [170]. Later this term is increasingly widely

used to characterize the effects of desertification. (Aridity and its characterization

are given in detail in Chapter 5)

The process of turning fertile land into desert is known as desertification. De-

sertification is not just the growth of the desert. It is a form of land degradation

when moderately dry land becomes more and more arid as a result of the loss

of water, vegetation, and life due to a combination of natural and anthropogenic

factors in arid, semi-arid, and dry-subhumid environments. Desertification can

be considered to be a subsection of land degradation, occurring in arid, semi-

arid, and dry sub-humid areas [52]. Thus desertification and Land Degradation

(LD) can be summed up as a process that affects land due to the intermingling

effect of various physical phenomena and anthropogenic activities in an intricate

way. This millennium is constantly facing challenges from desertification all over

the globe because 38% of the total global population inhabits drylands, which is

about 41% of the total Earths land surface[172]. Constant ecological changes due

to rapid growth in population pressure, industrial growth and urbanization have

encountered serious effects on the entire dynamics of dry land regions. Under-

standing these changes and the acting forces of desertification is thus the need of

the hour. The most efficient and cost-effective way of monitoring these changes in

spatial and temporal dimensions is by using remote sensing techniques through
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various satellite imageries provided by different satellite sensors. Indian admin-

istrative boundary occupies 2.4% of the total geographical area of the world but

supports 17% and 15% of the worlds total human population and livestock [30].

The increasing pressure of human and animal populations is leading to excessive

demand for natural resources, thereby leading to desertification and land degra-

dation [176]. In India, 25.14% of the total geographic area of the country had been

undergoing the process of desertification (arid, semi-arid and dry sub-humid re-

gions) during the year 20112013 [136]. Gujarat is one of the fastest-growing states

in India. Gujarat is located in the western part of India, with a 1,96,244 sq km

area, which is 6.2 percent of the total geographical area of India. The state has a

population of 6,04,39,692(4.99% of country population); with 308 population den-

sity, 919 sex ratio and 78.03% literacy[31]. Gandhinagar is the capital of Gujarat.

The major geographic features of Gujarat are the Rann of Katchh, the alluvial

plain, the Sourashtra peninsula, the Girnar hills, the Vindhyan ranges and the

coastal plain. The main rivers of the state include Sabasmati, Mahi, Narmada,

Tapi, Bhadar and Shetrunji. Gujarat soils are of various types like sandy, saline,

Clay, loamy and black cotton soil. The state comprises characteristics of an arid re-

gion in the western and northern parts and a semi-arid region in the southern and

eastern parts. Gujarat experiences an extreme climate of very hot and dry sum-

mer and very cold winter with an average annual rainfall of 625 mm. The 19th

Livestock Census (2012)[30] of India has placed the total livestock population at

512.05 million and the total of poultry birds at 729.2 million, out of which, there

are 271.28 lakhs livestock (5.29%) and 150.03 lakhs poultry (2.06%) in the state of

Gujarat. Thus, looking at the population pressure of human beings and livestock

and their activities in addition to climatic wind and water effects, an attempt was

made to measure the extent of land degradation and sustainable agriculture in

Gujarat. The statistical summary and analysis of the Land Degradation of Gujarat

state reveal that 52.22% (10.24 million ha) of the total geographical area is under-

going Desertification/Land Degradation [136]. The most significant process of

desertification/land degradation in the state is Water Erosion (19.53%) followed

by Salinity (13.24%), Vegetation Degradation (11.84% ), and Wind Erosion (5.99%).
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1.1 Causes of desertification & land degradation

Two different types of factors affect land degradation[35, 181].

1. Natural Factors

Natural factors that lead to land degradation and desertification are related

to the natural conditions of a particular area[184]. These factors are typi-

cally stable over time, or at least change slowly enough to be observed at

a human time scale. Examples of natural factors include topography, his-

torical climate, vegetation, and soil conditions. However, even these stable

conditions can be disrupted by extraordinary climatic events such as floods,

earthquakes, and thunderstorms. These events can cause significant and

rapid changes to the natural environment, resulting in soil erosion, loss of

vegetation cover, and other forms of land degradation[182].

2. Human factor

Land degradation and desertification are often caused by man-made actions

such as inadequate agricultural practices, deforestation, fires, tourism, ur-

banization, industrial activities, improper waste disposal, and mining. For

example, excessive use of fertilizers and pesticides can damage the soil and

reduce its fertility, leading to land degradation. Deforestation removes trees

that hold the soil together, leading to erosion and soil degradation. Similarly,

fires, whether natural or man-made, can destroy vegetation and contribute

to soil erosion. Urbanization and industrialization can lead to the destruc-

tion of natural habitats and ecosystems, as well as the pollution of soil and

water resources. Improper waste disposal and mining can also contribute

to land degradation and desertification. All of these human activities can

have a negative impact on the environment and the sustainability of land

resources, leading to long-term ecological and economic consequences[5].
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1.2 Indicators of desertification and land degradation

Indicators of desertification and land degradation are used to measure and assess

the health of ecosystems[86].

1. Physical indicators

The physical indicators of desertification include changes in rainfall patterns

and drought conditions. These changes can lead to a decline in the qual-

ity and quantity of ground and surface water, which can negatively impact

vegetation growth and soil fertility. Additionally, desertification can lead to

decreases in soil depth and organic matter, which can result in a decrease

in the ability of the soil to support plant life. In some cases, desertification

can lead to the formation of dunes and sandstorms, which can cause further

damage to the ecosystem.

2. Biological indicators

Biological indicators of desertification include changes in vegetation cover,

above-ground biomass, and yields of agricultural products. These changes

are often the result of soil erosion and other forms of land degradation.

When vegetation cover decreases, it can lead to increased soil erosion and a

decline in soil fertility. This can cause a decrease in the availability of wa-

ter and nutrients to plants, which can reduce their growth rates and over-

all health. Additionally, changes in above-ground biomass and agricultural

yields can indicate that the ecosystem is becoming less productive and less

able to support human and animal populations.

3. Animal/Livestock indicators

Animal and livestock indicators of desertification are also important in as-

sessing the health of ecosystems. Changes in the distribution and frequency

of key species can indicate that the ecosystem is becoming less hospitable to

these species. Additionally, declines in livestock production and yield can

be an early warning sign of ecosystem stress, as livestock are often a key

component of the social and economic fabric of many communities.
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4. Social/economic indicators

Social and economic indicators can provide valuable insights into the im-

pacts of desertification and land degradation on communities. Changes

in land use and water use can indicate that communities are struggling to

adapt to changing environmental conditions. Additionally, changes in set-

tlement patterns and population parameters such as migration statistics and

public health information can provide important information on the social

and economic impacts of land degradation. Changes in social processes

such as increased migration, decrease in incomes and assets, and changes

in relative dependence on cash crops versus subsistence crops can all be im-

portant indicators of the social and economic impacts of desertification and

land degradation.

1.3 Related Work

1.3.1 Concept of desertification & land degradation

Changes in land use and land cover (LULC) is being caused by rising demands

placed on the environment as a result of economic growth, expanding cities, and

rising rural populations. Land degradation is then a result of unsustainable land

usage and land cover changes. Therefore, land degradation is defined as a tempo-

rary or permanent reduction in the productive capacity of land [127]. It addresses

many types of soil degradation brought on by anthropogenic and natural sources.

Clearly, land degradation is a result of a variety of processes that both directly and

indirectly decrease the usefulness of the land.

Desertification is the word for land degradation caused by a variety of rea-

sons, such as climate changes and human activity, in arid, semi-arid, and dry

sub-humid environments[171]. The combination of several land degradation pro-

cesses acting over a landscape results in desertification, which increases in harsh

circumstances. It is a complicated phenomenon that necessitates the knowledge

of academics from a variety of fields, including geography, political science, eco-
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nomics, climatology, soil science, meteorology, hydrology, agronomy, and veteri-

nary medicine[63].

Historical Perspective

Since the dawn of human history, environmental damage in arid and semi-

arid areas has been a major issue for human civilizations. According to the initial

report of the South African Drought Investigation Commission, both northern

and southern Africa experienced severe droughts in the first two decades of the

19th century [62]. Numerous other tragic occurrences caught people’s attention,

including the Dust Bowl in the United States in the early 1930s and the Sahara’s

seeming extension[157, 98]. These are a few of the occasions that might be consid-

ered benchmarks or turning points in the emergence of the idea of desertification.

The Arid Zones Research program was started by the United Nations Educa-

tional, Scientific, and Cultural Organization (UNESCO) in the early 1950s. This

initiative produced a perspective framework regarding dry zones and led to the

release of the first encyclopedia on LD[177]. Later, as a result of the negative

effects of an extended drought in the West African Sahel in the early 1970s, an

increase in interest in environmental conservation was visible throughout the de-

veloped world.

Finally, as a result of this awareness, the Stockholm Conference on Environ-

mental Problems was held in 1972, and the United Nations Environment Pro-

gramme was established(UNEP). Following this, the UN General Assembly man-

dated the establishment of the UN Sudano-Sahelian Office and directed UNEP

to plan an international convention on desertification. The meeting was held in

Nairobi in 1977 and brought together representatives from several nations whose

landscapes had been either directly or indirectly impacted by the phenomena of

desertification. This immediately drew the attention of national and international

policy-makers, as well as academics on dry regions, who set out to develop plans

and tactics to tackle the global desertification crisis.

The United Nations (UN) General Assembly established the 17th of June as

"World Day to Combat Desertification and Drought" in 1994 with the goal of rais-
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ing public awareness of the issue and encouraging the implementation of United

Nations Convention to Combat Desertification (UNCCD) plans and initiatives in

nations with severe desertification issues. The convention has now matured and

is transitioning from developing National Action Programmes (NAP) to putting

them into action at the local and national levels, which is resolving significant

problems.

1.3.2 Land degradation assessment on global scale

Scientists all throughout the globe have created many ways for assessing and

monitoring LD and desertification, concentrating on the scale and severity of the

damage so that conservation efforts may be planned. Over the last 30 years, sev-

eral attempts have been made by international organizations, as well as individ-

ual researchers, to conduct LD and Desertification studies on a worldwide scale

using various methodologies. International conferences such as the United Na-

tions Conference on Environment and Development (UNCED) in Rio de Janeiro

in 1992, the Convention to Combat Desertification (CCD) in Paris in 1994, and the

International Conference on Population Development in Cairo in 1994 helped to

clarify the issues surrounding LD and Desertification.

It was observed that soil directly affects the land’s ability to produce, hence it is

important to investigate efficient soil degradation control measures. The Interna-

tional Soil Reference and Information Centre (ISRIC) was given a job by UNEP in

1987 to establish a system for a global evaluation of human-induced soil degrada-

tion. A Global Assessment of Human-Induced Soil Degradation map(GLASOD)

with a scale of 1 : 10, 000, 000 (Mercator projection) was created by ISRIC in part-

nership with numerous environmental experts and soil scientists from around the

world. The map shows the degree and type of degradation brought on by human

stresses on the land and soils [25]. The GLASOD map’s biggest flaw is that no spe-

cific form of soil degradation can be identified on the map. Four main stages of

soil degradation were discovered by GLASOD map. The first two categories deal

with soil material movement brought on by wind or water activities. The third

category addresses in-situ soil degradation caused by chemical damage, while
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the fourth deals with physical degradation. However, it should be noted that just

a little amount of remote sensing was used in this map, which entirely relied on

the opinions of experts [79]. From GLASOD data, a number of themed maps have

been created and published in UNEP’s World Atlas of Desertification [109]. The

GLASOD classification scheme and the statistical analysis based on the continen-

tal area are displayed in Table 1.1. The types of degradation listed in the table

include water, wind, nutrient decline, salinization, pollution, acidification, com-

paction, waterlogging, and subsidence of organic soil. The degree of degradation

is classified as light, moderate, strong, and extreme. The causative factors in-

clude deforestation, overgrazing, agriculture mismanagement, overexploitation,

and industrial activity.

According to the table, the total extent of human-induced soil degradation in

the world is 1965 million hectares, with the largest areas affected found in Asia

(747 million hectares) and Africa (494 million hectares). Water degradation is the

most common type of soil degradation, with 1094 million hectares affected world-

wide. Overgrazing is the leading causative factor of soil degradation, affecting 678

million hectares globally. The table highlights the significant impact that human

activities have on soil degradation, and the need for sustainable land management

practices to mitigate further degradation and maintain soil health[25].

The Assessment of Human-Induced Soil Degradation in South and Southeast

Asia (ASSOD) , a follow-up initiative to GLASOD, was created for the Asian area.

In October 1993, regional office of the UN’s Food and Agriculture Organization

(FAO) for Asia and the Pacific-Bangkok decided to complete ASSOD maps using

the same classification system as GLASOD but with more detail, so Asia, as well

as the the region of Asia-Pacific, were mapped at a greater level of 1:5 million

instead of 1:10 million scale[175].

Based on the georeferenced datasets of GLASOD, the SOVEUR project from

1997 to 2000 mapped the vulnerability of the soil and topography in Central and

Eastern Europe, paying particular attention to soil contamination issues[17]. The

Pilot Assessment of Global Ecosystems (PAGE) contrasted a newly determined

global region of agriculture with GLASOD data as its fundamental foundation.
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Table 1.1: Information on the extent of human-induced soil degradation by type,
degree, and causative factor for the world and major continents or regions pub-
lished by GLASOD in 1999, expressed in millions of hectares[25].

World Asia North
Africa
&
West
Asia

Africa South
Amer-
ica

Central
Amer-
ica

North
Amer-
ica

EuropeOceania

Degradation Type

Water 1094 440 84.1 227 123 46 60 114 83
Wind 548 222 145.2 187 42 5 35 42 16
Nutrient Decline 135 14 6.3 45 68 4 - 3 -
Salinization 76 53 46.9 15 2 2 - 4 1
Pollution 22 2 0.3 - - - - 19 -
Acidification 6 4 - 2 - - 1 - -
Compaction 68 10 3.6 18 4 - - 33 2
Waterlogging 11 - 0.1 - 4 5 - 1 -
Subsidence of Organic
Soil

5 2 - - - - - 2 -

Total 1965 747 286.5 494 243 62 96 216 102

Degradation Degree
Light 749 295 142.8 173 105 2 17 60 96
Moderate 910 344 113.7 192 113 35 78 144 4
Strong 296 108 29.6 124 25 26 1 10 2
Extreme 9 - 0.4 5 - - - 4 -

Causative Factors
Deforestation 579 298 52.7 67 100 14 4 84 12
Overgrazing 678 198 152 243 68 9 29 48 83
Agriculture Mismanage-
ment

552 204 49.1 121 64 28 63 64 8

Overexploitation 133 46 32.3 63 12 11 - 1 -
Industrial Activity 23 1 0.4 - - - - 21 -

The PAGE findings indicated that degradation caused by humans had been more

severe than anticipated by the GLASOD since the mid-1900s[186].

In 1991, UNEP merged GLASOD data with maps from the International Cen-

tre for Arid and Semiarid Land Studies of Texas Technical University, which showed

the primary land use classifications, to conclude that about 2,600 Mha, mostly the

rangelands, were affected by vegetation degradation that was not clearly reflected

in GLASOD. This study’s publication received harsh criticism for GLASOD [137].

After 1992, it became clear that a consistent approach was needed for both the

detailed assessment of soil degradation and its conservation. At this point, the

approach for the World Overview of Conservation Approaches and Technologies

(WOCAT) developed. The Center for Development of the Environment in Bern,
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Switzerland supports the worldwide collaboration that organizes the world net-

work known as WOCAT.

In addition to more than 35 national partner institutions, this forum included

FAO, UNEP, Regional Land Management Unit representatives, International Cen-

tre for Integrated Mountain Development, Swiss Agency for Development Co-

operation, International Atomic Energy Agency, Danish International Develop-

ment Agency and Swiss Agency for Development Co-operation. The main goal of

WOCAT was to make it possible for individuals from around the world to share

knowledge and experiences in order to recognize and address soil degradation.

In addition to this, a database of trustworthy sources of information covering nu-

merous geographic regions was also intended to be created.

The data acquired provided suggestions for how to improve current proce-

dures and helped uncover research problems. To gather data on technology, field-

level techniques, and mapping relevant to soil and water conservation, WOCAT

created a set of three extensive questionnaires. Data were analyzed in a systematic

way using a standardized tool. In addition, WOCAT started offering training ses-

sions on how to complete the questionnaires and ultimately update the database.

As a result, WOCAT is the first significant effort to record soil conservation and

watershed management actions in a consistent manner at all scales, from global

to regional [174].

Although WOCAT has produced the intended outcome efficiently and cost-

effectively, there is a need to shift the focus from developing tools and techniques

using new-age technology to their implementation in nations and regions that are

experiencing land degradation.

The Millennium Ecosystem Assessment (MA) was another method for figur-

ing out the implications of ecosystem change. Kofi Annan, the Secretary-General

of the UN, called MA in 2000. It evaluated the demands of the Ramsar Convention

on Wetlands, the Convention on Migratory Species, the Convention to Combat

Desertification, and the Convention on Biological Diversity, as well as the needs

of other users in civil society. The MA makes use of data from models, datasets,

practitioners, and local communities as well as research articles. In four different
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expert working groups, more than 1,300 writers from 95 countries contributed to

the creation of the global assessment.

MA offers management and planning tools as well as insight into how deci-

sions affecting ecosystems may affect them in the future. Since the MA has not

been focused on global land degradation, only one of the systems, the "Dryland

Systems," has thoroughly analyzed land degradation. The MA examined land

degradation in dry regions and revealed that by 1990, 14 major terrestrial biomes

and more than half of the area of four additional biomes had been changed, pri-

marily to agricultural and livestock production systems. Lepers et al.[93] used

remote sensing and regional data sets that partially overlapped to assess deser-

tification for the MA in 2003. The soil’s condition was regarded as being repre-

sented by the vegetative cover and its Net Primary Productivity (NPP). Based on

this methodology, it was determined that 10% of the world’s drylands, includ-

ing hyper-arid regions, were degrading between 1981 and 2000[100]. However,

the MA assessment’s main flaw is that its authors limited their conclusions to the

generalization that while the entire costs of ecosystem service degradation are not

easy to quantify, the information now available shows that they are significant

and rising[99].

The Land Degradation Assessment in Dry Lands (LADA) was created as a

result of additional research on this. This project aimed to produce national, re-

gional, and global assessments for planning and implementing interventions to

ameliorate land degradation and promote sustainable land use and management

practices. The objectives included quantifying and analyzing the type, extent,

severity, and impacts of land degradation on ecosystems as well as carbon storage

in dry lands at various spatial and temporal scales. The Global Land Degradation

Assessment in Dry Lands (GLADA), which came after LADA, was based on NPP

and how it changed over time utilizing the NDVI and rain-use efficiency data.

In accordance with GLADA findings, 3,510 Mha of the terrestrial land sur-

face, or 24% of the world’s land area, experienced degradation between 1981

and 2003. Tropical Africa and south of the equator, Southeast Asia, South China,

North-central Australia, drylands and sloping lands of Central America and the
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Caribbean, Southeast Brazil, the Pampas, and the boreal woods were the areas

most severely affected [14].

A Global Land Degradation Information System (GLADIS) was created by

FAO and partners as a follow-up to LADA/GLADA [115]. As GLADIS set out to

ascertain the status of ecosystems’ capacity to deliver goods and services and the

change in this capacity, GLADA concentrated on the production function. The six

quantifiable categories of biomass, soil health, water quantity, biodiversity, eco-

nomic services, and social services were used to categorize goods and services.

Global data sets on land use and management, climatic conditions, socioeconomic

conditions, etc. were evaluated using models to provide a baseline condition for

the assessment of the state [57]. GLADIS offers a number of global maps that can

be downloaded and queried that display the condition and trends of ecosystem

services. A growing number of maps and databases that list the input informa-

tion used to calculate each individual parameter are available to assist GLADIS.

Ancillary maps, such as global land use and land cover map with attributes, are

also given to accompany the later datasets. GLADIS relies mostly on socioeco-

nomic information and a few bio-physical characteristics for its indicators, which

are very few. In an effort to get a sense of the subnational condition, an effort

was made to concentrate on the most important criteria and, whenever possible,

include geo-referenced indicators. This has only been achievable for biophysical

variables, while country statistics are often provided for socio-economic factors.

Therefore, spatial distribution over the globe needs to be completed.

The United Nations Environment Programme (UNEP) published the World

Atlas of Desertification (WAD) in 1992 as a comprehensive global assessment of

the state of desertification and land degradation. The goal of the atlas was to

provide a comprehensive picture of the extent and severity of desertification, as

well as the underlying causes and drivers, as well as the impacts on human and

natural systems.

The WAD identified the global distribution of desertification, highlighting that

approximately one-third of the earth’s land surface is arid or semi-arid, with de-

sertification affecting approximately one-third of this area. Climate change, land
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use change, and unsustainable land management practices such as overgrazing

and deforestation were also identified as major drivers of desertification in the

report[108]. The WAD contributed significantly to the global understanding of

desertification and land degradation by providing a comprehensive and easily

accessible source of information on the subject. Recent assessments, such as the

Intergovernmental Panel on Climate Change’s Special Report on Climate Change

and Land (2019) and the Intergovernmental Panel on Biodiversity and Ecosystem

Services(IPBES)’ Global Assessment Report on Biodiversity and Ecosystem Ser-

vices (2019), have highlighted the need for updated data and methods to better

understand the extent and impact of land degradation and desertification at the

global level.

The United Nations Convention to Combat Desertification (UNCCD) conducts

the Global Land Outlook (GLO), a comprehensive global assessment of the status,

trends, and challenges of land and land-based ecosystems, as well as the drivers of

land degradation. The first edition of the GLO was released in 2017, and the sec-

ond edition was released in 2021. The second edition of the GLO, 2021, provides

updated information and analysis on the status and trends of land degradation,

as well as the drivers of change, and emphasizes the critical need for action to

address land degradation and strengthen the resilience of land-based ecosystems

in the face of multiple global challenges, such as climate change, biodiversity loss,

and the COVID-19 pandemic[173].

1.3.3 Land degradation mapping in the context of India

India, which primarily relies on agriculture for its economy, is particularly more

concerned about land degradation. Agriculture provides a means of subsistence

for two-thirds of the people. In the past 20 years, numerous national and regional

policies have been launched to address this issue, but the outcomes have been

insufficient. For the purpose of creating effective policies to address the LD issue,

analysis of causes and extents is crucial. The Convention to Combat Desertifica-

tion (CCD), which went into effect in 1996, has 176 signatories, including India.

To stop additional dry land degradation, the Convention outlined a framework
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for national, regional, and sub-regional programs. The CCD is represented by

the Ministry of Environment, Forestry & Climate Change (MoEF & CC) in the

case of India. Additionally, it is in charge of creating and carrying out the Na-

tional Action Plan (NAP). The Regional Action Programme (RAP) was developed

under UNCCD [170] to fight desertification. In order for the member nations of

the Asian region covered by RAP’s programme to effectively combat desertifica-

tion, those nations must have stronger capacities. Six theme programme areas

were chosen for the RAP. The first Thematic Program Network (TPN-1) focuses

on monitoring and evaluating desertification.

To develop the national network for desertification monitoring and assess-

ment in India, the Space Applications Centre (SAC), Indian Space Research Orga-

nization (ISRO), Ahmedabad, was chosen as the national focal institution. Using

IRS LISS-III data, a pilot project was launched to standardize and produce a de-

tailed classification system and methodology for desertification status mapping at

a scale of 1 : 50, 000 under varied dry-land conditions in both hot and cold deserts

in India. The entire nation’s desertification status was mapped out at a scale of

1 : 5, 00, 000 using IRS P6 AWIFS data. Using satellite data, it has been possi-

ble to identify and map the main causes of land degradation, including water

erosion, vegetative degradation, wind erosion, salinization/alkalization, water-

logging, frost heaving, frost shattering, mass movement, etc.

The study finds that 105.48 mha (million hectares) areas or 32.07% of the na-

tion’s overall geographic area are experiencing land degradation. The desertifi-

cation zone is 81.4 mha [7]. Additionally, the estimates have been improved by

using digital satellite photos rather than hardcopy satellite images, the statistical

summary and analysis indicates that there has been an increase in the area un-

dergoing land degradation in India over the years. The most recent data for the

timeframe 2018-19 shows that 97.85 million ha, which is equivalent to 29.77% of

the country’s Total Geographic Area (TGA), is undergoing land degradation. This

is higher than the areas undergoing degradation in the timeframes of 2011-13 and

2003-05, which were 96.40 mha (29.32% of TGA) and 94.53 mha (28.76% of TGA),

respectively. Moreover, the data shows that there has been a cumulative increase
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of 1.45 mha (0.44% of TGA) undergoing degradation from 2011-13 to 2018-19, in-

dicating a worsening trend. In contrast, there was a cumulative increase of 1.87

mha (0.57% of TGA) from 2003-05 to 2011-13, which suggests that the rate of in-

crease has slowed down in recent years[136, 154]. Other national organizations

have evaluated LD over India as well. These assessments produce a wide range

of findings, primarily because diverse methodologies for designating degraded

areas and distinct evaluation criteria were applied [135]. The LD estimation by

several national agencies in India is shown in Table 1.2. Land degradation has

been cited in numerous studies as one of the main environmental issues facing

our nation [119, 132, 147, 189].

Table 1.2: Land Degradation estimation by various national agencies of India

Agency Estimated
Area
(Mha)

Criteria for Delineation

National Commission of Agriculture
(1976)

148.09 Based on secondary data collection

Ministry of Agriculture (1978) 175 Based on Net Cultivated Area esti-
mates

Society for Promotion of Wasteland
Development (1984)

129.58 Based on secondary data collection

National Remote Sensing Agency
(1985)

53.28 Mapping on 1:1 million scale based
(1980-82) on remote-sensing tech-
niques

Ministry of Agriculture (1985) 173.64 Land degradation statistics for the
states based on Net Cultivated Area es-
timates

Ministry of Agriculture (1994) 107.43 Elimination of duplication of area
above

NBSS&LUP (1994) 187.7 Mapping 1:4.4 million scale at coun-
try level and then deducting at state
level based on Global Assessment of
Soil Degradation (GLASOD) Mapping
1:4.4 million scale at country level and
then deducting at state level based on
GLASOD guidelines

NRSC(2000) 63.85 Based on satellite data (1986-1996)
NRSC (2005) 55.27 Based on satellite data (LISS-III sensor

data of 2003)
NBSS&LUP (2005) 146.82 Mapping of all the states at 1:250,000

scale. Global Assessment of Soil Degra-
dation (GLASOD) guidelines

SAC (2016) 96.40 Based on satellite data (2011-
2013)1:5,00,000

SAC (2021) 96.85 Based on satellite data (2019-
2021)1:5,00,000
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1.4 Importance of Remote Sensing and Machine Learn-

ing

Machine Learning (ML) and Remote Sensing (RS) have become increasingly use-

ful in land degradation and desertification assessment and mapping. The combi-

nation of these two technologies allows for a more accurate and efficient analysis

of the changes in land use and land cover over time, which are indicators of land

degradation and desertification.

Remote sensing is a powerful tool that enables scientists to gather informa-

tion about the Earth’s surface and atmosphere using data collected from satellites,

aircraft, and other platforms. These sensors capture data in the form of electro-

magnetic radiation, which can be used to detect changes in vegetation cover, soil

moisture, and other environmental parameters that are important indicators of

land degradation and desertification[104, 178]. Over the years, the development

of satellite remote sensing technology has significantly improved, providing us

with more detailed and accurate information about the globe.

Table 1.3 summarizes some of the key developments in satellite remote sens-

ing technology over the years, starting with aerial cameras, to the present satellite

imagery. Some of the notable developments include the launch of the Landsat

(Land Remote Sensing Satellite) series of satellites in the 1970s, which provided

high-resolution imagery of the Earth’s surface, and the development of the Ad-

vanced Very High Resolution Radiometer (AVHRR), which has been widely used

for vegetation mapping and monitoring. The evolution of remote sensing-based

methods for land degradation (LD) mapping, monitoring, and assessment are also

summarized in Table 1.3. Among these methods, the analysis of vegetation cover

dynamics and vegetation decline analysis is the most commonly applied ones[55].

Machine learning algorithms can be trained to analyze large datasets gener-

ated by remote sensing and to classify land cover and land use changes over time.

This allows for the detection of patterns and trends in land degradation and de-

sertification that may be difficult to identify using traditional manual methods.

ML and RS can also be used to identify areas that are at high risk of land
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Table 1.3: The development of remote sensing data and methods for assessing
land degradation.[55]

19701980 19801990 19902000 20002010+
Input data Multi-spectral im-

ages, aerial photos
Multi-spectral im-
ages, aerial pho-
tos and derivatives,
vegetation indices

Multi-spectral
images, aerial
photos and deriva-
tives, vegetation
indices, deriva-
tives from spectral
transformation
(Tasseledcap, PCA,
SMA), vegetation
biophysical param-
eters

UAV images and
aerial photos
(and derivatives),
multi- and hyper-
spectral image
(and derivatives)
time series, vege-
tation indices and
vegetation produc-
tivity estimates,
yield estimates,
spectral transfor-
mation, vegetation
biophysical param-
eters

Methods (exam-
ples)

Visual interpre-
tation of aerial
photos, photo-
grammetric meth-
ods, manual
mapping

Image classi-
fication, map
digitalization,
expert mapping,
photogrammetric
methods, manual
mapping

Image classifi-
cation, spectral
transformation,
change detection,
semi-quantitative
image analysis,
expert mapping

Time series anal-
ysis, data fusion,
LD modeling, im-
age classification,
spectral transfor-
mation, change
detection, partic-
ipatory mapping
methods

Sensors/platforms

(examples)
Aerial cameras,
CORONA, Landsat
MSS

Landsat TM, SPOT,
AVHRR

Landsat
ETM/ETM+,
SPOT, ASTER,
AVHRR, LISS

LISS, Car-
tosat, Landsat,
SPOT, AVHRR,
Aster,MODIS,
MERIS, Sen-
tinel,RapidEye,
IKONOS, Quick-
bird, GeoEye,
Hyperion, UAV

Resolutions

(examplary ranges)
180 m, panchro-
matic and few
multispectral
bands

1 m to 8 km,
panchromatic,
multispectral and
thermal bands

1 m to 8 km, in-
creasing number of
bands

0.01 m to 8 km, in-
creasing number of
bands, hyperspec-
tral sensors

degradation and desertification and to develop predictive models that can help to

forecast future changes in land use and land cover. This information can then be

used to inform policy decisions related to land management and conservation.

The use of machine learning and remote sensing techniques for land degra-

dation and desertification assessment and mapping has become increasingly im-

portant in recent years. There have been several studies that have focused on the

application of machine learning algorithms and remote sensing data for accurate

and efficient assessment and mapping of land degradation and desertification.

Many studies demonstrate the effectiveness of machine learning algorithms
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and remote sensing data for mapping and monitoring land degradation, soil ero-

sion, and desertification in various regions of the world. Several studies used ma-

chine learning algorithms to map land degradation and soil erosion in different

regions of the world[77, 193, 191].

In India many research studies have utilized various remote sensing and GIS

techniques to map and monitor land degradation and soil erosion in different

parts of the country[40, 41, 138, 83]. These studies used machine learning algo-

rithms such as Random Forest and Support Vector Machines for the classification

of satellite data.

Overall, the use of Machine Learning and Remote Sensing in land degradation

and desertification assessment and mapping has significant potential and can be

a powerful tool to improve our understanding of these phenomena and to guide

effective land management practices.

1.5 The motivation of the work

Land degradation is one of the most pressing environmental issues that we face

today. It refers to the loss of productivity of land due to natural or human-induced

factors, including deforestation, erosion, and overgrazing, among others. Land

degradation can result in a wide range of negative impacts on the environment,

including the loss of biodiversity and ecosystem services, reduced food security,

and increased vulnerability to natural disasters. Desertification, in turn, exacer-

bates the impact of climate change and reduces the ability of people to sustain

themselves in affected regions. Therefore, developing effective strategies to mon-

itor and mitigate the effects of land degradation and desertification is crucial for

the sustainable use of natural resources and the livelihoods of millions of people

living in affected regions. The Land Degradation Neutrality (LDN) Target Setting

Programme was launched by the UNCCD in 2014 to help countries achieve LDN,

which is defined as a state whereby the amount and quality of land resources nec-

essary to support ecosystem functions and services and enhance food security re-

mains stable or increases. India, being a party to the UNCCD, has been working
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towards the goal of achieving Land Degradation Neutrality. India faces signifi-

cant land degradation challenges due to factors like deforestation, unsustainable

agricultural practices, urbanization, and climate change.

To address this issue, it is essential to monitor land degradation and its status

on a timely basis to identify areas that require immediate attention. Avoiding,

reducing, and reversing land degradation and restoring degraded land is an im-

mediate need to secure the biodiversity and biological system benefits that are

imperative to life on Earth. To pause and reverese the latest trends in land degra-

dation, there is an urgent need to monitor these process and its stutus on timely

manner. Remote sensing can play a significant role for generating this indicator.

Distinguishing land degradation and perceiving its different sorts is a need to go

to the practical lengths for combating it just as preserving and keeping the soil

healty. Remote sensing techniques, which allow for the systematic monitoring

and mapping of land surface changes, offer a promising tool for achieving this

goal. Therefore, there is a need to develope strategies to gain from medium to

high-resolution satellite EO data.

In response to this issue, the presented thesis proposes an innovative approach

to monitoring land degradation and desertification. Our objectives target for pre-

senting the application of remote sensing to monitor land degradation and de-

sertification in arid areas by incorporating satellite data with meteorological in-

formation and in situ information to detect land degradation and desertification

processes. This thesis proposes using remote sensing as a tool to monitor land

degradation and desertification in different areas. The proposed approach will

not only provide effective information to monitor changes in land surface but

also help decision-makers in producing relevant relief measures for sustainable

resource exploitation.

1.6 Objectives and Accomplishments of the Thesis

The main objective of this thesis is to identify and understand the land degra-

dation and desertification process by utilizing remote sensing data and machine
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learning models. To accomplish this, four primary objective objectives were set

for this thesis.

• The first objective is to pattern recognition of desertification process. For

this, semi-automatic algorithms have been developed that utilize satellite

data and machine learning models to identify desertification status. A new

three phase methodology has been developed to map the different stages of

desertification.

• The second objective is to focus on soil degradation, which occurs when soil

health or productivity is declining. Here, developed an algorithm for pre-

dictive soil modeling using satellite data and in-situ ground observations.

Artificial neural network algorithms have been developed for this soil map-

ping.

• The third objective is to identify the vulnerability of areas to desertification.

Environmental parameters were used in combination with anthropological

data to find areas vulnerable to desertification. Two different approaches

were explored for vulnerability assessment. This objective helps in identify-

ing the areas that are most vulnerable to desertification.

• The fourth objective of this thesis is to study and identify desertification

hotspots using Aridity index. Climate change is a driving force for deserti-

fication and land degradation, and this objective helps in identifying the ar-

eas that are most vulnerable to the effects of climate change. Desertification

hotspots are vulnerable areas within defined aridity zones. This objective

helps in identifying the areas that are most affected by desertification.

Overall, the objectives of this thesis aim to provide effective information for iden-

tifying and monitoring land degradation and desertification. The utilization of

remote sensing data and machine learning models can aid in identifying the areas

that are most affected by these issues, and appropriate measures can be planned

and implemented to improve the situation. Identifying the desertification hotspots

and vulnerable areas can help in formulating and implementing targeted mitiga-

tion measures.
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We discuss in brief each of our above-mentioned objectives in the following

thesis chapters.

1.7 Organization of Thesis Chapters

The thesis is being planned to be structured in six chapters as shown in Fig. (1.1).

Figure 1.1: Organization of the thesis chapters.

Remote sensing images are essential for various applications be it social or en-

vironmental. This study aims at providing a hierarchical methodology for land

degradation mapping, land use land cover classification, degradation process

identification and mapping using multispectral LISS-III images.

Chapter 2: Pattern recognition of the desertification process was performed in
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this chapter by proposing patch-based CNN architecture, a deep learning archi-

tecture and Object-based image segmentation to achieve high accuracy on level

1 land cover classification. The results of the different algorithms are compared

for different terrains. The study demonstrates that segmentation with the ran-

dom forest method outperforms CNN and SVM with an accuracy of 85% for level

1 land cover classification. Further, vegetation degradation in forest areas is as-

sessed in central parts of Gujarat, India, having deciduous tropical forest cover.

And with this land degradation in agricultural areas due to soil salinity is stud-

ied, particularly in southeastern parts of Gujarat, India. Degradation due to soil

salinization is very common in arid and semi-arid regions. ML algorithms like

SVM and RF were applied to different features to identify the degradation pro-

cess.

Chapter 3: Soil degradation causes desertification and severely reduces poten-

tial soil productivity. Due to this, the degradation of the ecosystem and its asso-

ciated ecosystem services are severely affected. There are several soil properties

through which one can get an idea about the soil condition. Soil properties infor-

mation can indicate the status of the soil desertification of the particular region.

Different soil properties play different roles in the soil system. The machine learn-

ing algorithms used and ANN-based model has been developed to predict the

soil properties like EC, pH and OC.These three soil properties are important in-

dicators of soil degradation. Environmental parameters were taken as covariates

in prediction models. Various covariates used in the study are,vegetation indices,

terrain indices, soil parameters, spatial attributes and meteorological parameters

of the study region. Field soil sampling data of the study region was obtained

from Soil Health Card (SHC) for the year 2014 and was incorporated in training

the model. The SHC data was divided into different ratios like 60:40,70:30, and

80:20 for training and testing the model respectively. The SCORPAN model[106]

has been considered as the base approach for the development of the ANN-based

prediction model.

Chapter 4: Discusses mapping of vulnerable areas to desertification. Land

degradation is a complex set of processes including climate change and human
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activities, which interact over space to reduce or lose land productivity and lead

to desertification. In the present study, a desertification vulnerability assessment

was carried out combined with remote sensing and geographic information sys-

tem (GIS) to map sensitive areas. Assessment through remote sensing offers a

series of advantages such as data consistency, fairly near real-time data acquisi-

tion and a source for having spatially explicit data. Two different approaches were

used for vulnerability assessment. Mediterranean Desertification and Land Use

(MEDALUS)[22, 40] approach identifies such sensitive areas based on an index in

which environmental quality and anthropogenic factors wear included as layers

for the Panchmahal district of Gujarat state in India. Second approach followed

was fuzzy logic (FL) method in which fuzzy membership function[38, 41] was

used to identify the risk area prone to desertification. Soil, climate, land utiliza-

tion, geography and vegetation contribute to the land degradation of any area.

However, man’s intervention leads to significant changes in the environment,

making socio-economic factors a considerable input to assess desertification vul-

nerability. Indices related to these factors have been generated. As a result, both

methods have used natural and socio-economic factors to find the severity level

of the desertification vulnerability in the Panchmahal district.

Chapter 5: Discuss the role of climate in the process of desertification. For

the climate parameters, I have used the aridity index which incorporates most of

the weather data like temperature, rainfall, humidity, wind and solar radiation

etc. The aridity index (AI) is a useful parameter to study desertification condi-

tions and its pattern. The AI formulation adopted by United Nations Environ-

ment Program (UNEP), Food and Agriculture Organization (FAO), and United

Nations Convention to Combat Desertification (UNCCD), represents a simple but

effective scientific investigation tool. AI is calculated by dividing the total annual

precipitation by the annual potential evapotranspiration (PET).[16] The objective

is to study and identify the desertification hot-spot using AI in the Gujarat state.

Desertification hot spots are vulnerable areas within defined aridity zones. The

weather data e.g. minimum temperature, maximum temperature, solar radiation,

wind speed, humidity and rainfall for more than 18 locations all over Gujarat for
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the past 20 years has been used in this study. FAO Penman-Monteith method[8]

was used to calculate PET. Which along with rainfall were used to calculate AI for

different locations. Annual AI map for the whole of Gujarat has been generated

using these values and compared with CGIAR(Consultative Group on Interna-

tional Agricultural Research) based aridity map. MODIS-Terra NDVI product for

the past 20-year period of rabi season has been used to get a correlation of AI with

NDVI. In addition to comparing annual AI and NDVI data, thirty years average

AI map has been generated for the State.

In the upcoming chapters of the thesis, a detailed discussion of the objectives

outlined earlier is given. The following chapters will provide a exploration of

each objective, along with an in-depth analysis of their work. This will involve a

meticulous examination of the methodology employed, the datasets utilized, the

study area selected, and a thorough review of existing literature relevant to each

objective. This comprehensive approach ensures that readers are equipped with

the necessary information to comprehend and evaluate the subsequent findings

and conclusions of the thesis.
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CHAPTER 2

Pattern recognition of Desertification process

Remote sensing techniques are an efficient tool for monitoring the Earth in a short

time and at low cost.[102] One of the primary advantages of remote sensing in

land cover classification is its ability to capture data over large and inaccessible

areas. Remote sensing can cover vast areas in a short period of time, making

it a valuable tool for monitoring and assessing changes in land cover. Remote

sensing can also capture data in areas that are difficult to access, such as rugged

terrain or dense forests, making it a useful tool for mapping areas that are not

easily accessible by ground-based methods[183, 144]. Remote sensing data, along

with advancements in image processing techniques, machine learning and artifi-

cial intelligence, geographical information systems, etc. have been used to moni-

tor activities like land use mapping and change detection, deforestation rates etc

[178]. Remote sensing images are essential for various applications be it social

or environmental[183, 68, 166, 158]. One of the most significant advancements in

remote sensing and machine learning-based land cover classification is the avail-

ability of high-resolution satellite imagery. The use of this imagery has enabled

researchers to develop more accurate and detailed land cover maps. The integra-

tion of machine learning algorithms, such as support vector machines, random

forests, and artificial neural networks, has also enhanced the accuracy of land

cover classification by automating the process and reducing human error. Several

studies have compared the performance of different machine learning algorithms

for land cover classification[162, 164, 194, 148].

Another significant development in land cover classification is the use of multi-

spectral and multi-temporal remote sensing data. Multi-spectral data refers to the
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use of different spectral bands to capture information about different features on

the earth’s surface. Multi-temporal data refers to the use of satellite imagery taken

at different times to capture changes in land cover over time. The combination of

multi-spectral and multi-temporal data has been shown to improve the accuracy

of land cover classification[185].

This study aims at providing methodological options for land cover classifica-

tion, degradation process identification, and mapping using multispectral LISS-III

imagery. A different stage hierarchical approach is proposed in this study. Ta-

ble 2.1 shows the classification system in the hierarchical desertification mapping

process[7, 136], where different levels are related to different findings. Level 1

study involves land cover classification, whereas the study of land degradation

processes is conducted at level 2 of the hierarchy. Level 3 shows the severity level

of degradation. Generally, as we move further in hierarchical levels, attention to

detail increases. For example, one of the classes in level 1 may be agriculture,

which represents a broad category. It is a general classification that encompasses

various land covers. Moving up to hierarchy level 2, the focus narrows down

to the degradation process itself. This level examines the specific mechanisms

and factors contributing to land degradation for the level 1 class. It may involve

studying aspects such as soil erosion, deforestation, wind/water erosion, and any

activities or processes that lead to land degradation as shown in the table.

Up-to-date and accurate land cover information is crucial to many resource

monitoring, planning and management programs. Several ecological models make

use of such information. Conventional methods of land use classification rely on

inefficient, uneconomical and time-consuming methods like field surveys. These

methods are very impractical when the data is required for instantaneous global

mapping or extending over large areas of land. Satellite images are a reliable

source for obtaining land cover information due to their concise view and peri-

odical coverage. Here, the pixels of the remote sensing image are grouped into

meaningful classes, each class representing a land cover type, also known as dig-

ital image classification. Different approaches for level 1 land cover classification

were performed including Pixel-based classification, Object-based classification,
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and Convolution Neural network.

Table 2.1: Three-level hierarchical desertification/land degradation classification
system

Level 1 Level 2 Level 3

Land Cover Detection Process of Degradation Severity of pro-
cess

Agriculture Water Erosion
Forest / Plantation Wind Erosion
Grassland/ Grazing land Water Logging Based on tem-

poral threshold-
ing

Scrub land Salinization/ Alkalinization and change
severity will be
decided

Barren / Rocky Area Man made
Water body / Drainage Vegetation Degradation
Urban

The identification of land degradation processes like vegetation degradation,

salinity, water erosion, wind erosion, and water logging is a challenging task. This

is because of the varying information required to identify different degradation

processes, which are not easily available. Vegetation degradation is prevalent in

forest areas that are accessible and occur in areas where human population den-

sity is high. Assessment and monitoring of such regions are crucial to help create

conservation strategies and save the region’s biodiversity. Romero-Sanchez et. al.

demonstrates the use of above-ground biomass calculated from multispectral data

to obtain thresholds for areas to be considered as degraded. [134] According to the

study, above-ground biomass shows a positive correlation with most vegetation

indices like NDVI(Normalized Difference Vegetation Index). In another study,

Connette et. al. have shown a comparison of the classification-based machine

learning models to map degradation in different forest types[37]. This thesis used

two different vegetation indices and pixel-based classification models like SVM

and random forest to identify the regions that have undergone vegetation degra-

dation. Comparison in the performance of the two models and validation of the

results are shown in subsequent sections. Another degradation phenomenon that
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is affecting the environment, especially agricultural lands is salinity. Poorly veg-

etated areas usually characterize areas affected by saline soils. Thus, knowledge

about the extent of degradation due to soil salinization is crucial for the planning

and implementation of effective soil improvement strategies.[11] In most studies

salinity is assessed and mapped based on the band ratios in visual, near-infrared,

and short-wave infrared spectral ranges.[11, 117] In [37], different indices were

obtained from multispectral images, showing an encouraging statistical correla-

tion between soil electrical conductivity (EC) measurements conducted in the field

and spectral indices calculated from remote sensing data. The study also showed

that the salinity index had the highest correlation with soil electrical conductivity.

Another study conducted by Asfaw et. al. demonstrates that there was a strong

correlation between the sodium and chlorine contents of certain plants and the

soil’s spectral reflectance. Thus showing that reflectance spectroscopy methods

can be used to monitor and delineate soil salinity in growing vegetation, espe-

cially agricultural lands[11].

2.1 Study Area

Two distinct areas were chosen to serve as explanations or proofs of concept for

the methodology, one with vegetation degradation at Panchmahal and other soil

salinity in the Bhavnagar district, located in the central and southeastern parts of

Gujarat, India. These are hot semi-arid regions with dry climates. Satellite images

were used for land use classification at level 1 followed by the classification of

land degradation processes at level 2.

Bhavnagar district lies in the southeast corner of the Gujarat state. It is bounded

in the north by Surendranagar and Ahmadabad districts, in the west by Rajkot

and Amreli districts and in the south by the Arabian Sea and part of Amreli dis-

trict, and in the east by the Gulf of Khambhat. It occupies an area of 8334 sq.

km. Bhavnagar district has a population of 2,880,365 with 574 population density,

933 sex ratio and a literacy rate of 75.5%[30]. Bhavnagar district forms a part of

the Kathiawar Peninsula and is subdivided into four sub-micro regions, namely,
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Bhavnagar Coastal Plain, Palitana Savarkundla upland, Songadh Forested Plain

and Keri, Kalubhar and Ghelo Plain on the basis of topography, climate, geol-

ogy, soils and natural vegetation. The main rivers which drain this district are the

Kalubhar river, Bagad river, and Gomati river. Bhavnagar is observed with 35.64%

of total geographical area under land degradation/ desertification for the period

2011-13. The area under land degradation/ desertification in the district has de-

creased about 3.07% since 2003-05. The most significant process of land degra-

dation/ desertification in the district is Vegetation Degradation (11.46% during

2011-13 and 11.49% during 2003-05) followed by Water Erosion (10.86% during

2011-13 and 10.79% during 2003-05)[136].

Figure 2.1: Study Area shown in as red polygon in Bhavnagar district and
Panchmahal district
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Panch Mahals district falls in the eastern portion of Gujarat State. It is bounded

on the north by the Sabarkantha district and Rajasthan State, on the east by Do-

had district, Vadodara district to the south and on the west by Kheda and Anand

districts. It covers an area of 5231 sq. km area. The district has a population of

2,390,776 with 457 population density, 949 sex ratio and a literacy rate of 70.99%[30].

Topographically, the district is divided into two major zones hills and plain. The

northern and eastern parts of the district are hilly whereas the southern and west-

ern areas of the district are plain. The general elevation of the district is between

100 meters and 400 meters from mean sea level. The district is rich in water re-

sources. It is drained by several rivers like Mahi, Goma, Kun, Panam, Karad, Kali

and Meshri. Mahi is the longest river.

Panch Mahals is observed with 52.07% of total geographical area under land

degradation and desertification for the period 2011-13. The area under land degra-

dation and desertification in the district has decreased about 0.22% since 2003-05.

The most significant process of land degradation/ desertification in the district is

Vegetation Degradation (40.42% during 2011-13 and 41.28% during 2003-05) fol-

lowed by Water Erosion (11.03% during 2011-13 and 10.54% during 2003-05)[136].

2.2 Dataset

Satellite Data

Multi-temporal digital IRS LISS-III data, ancillary information, collateral data and

forest cover layer of Forest Survey of India (FSI) were used. IRS LISS-III is 10 bits

data with 23.5 meters spatial resolution, 24 day repeativity, swath of 141 km in

four spectral channels, i.e. 520-590 nm (Green), 620-680 nm (Red), 770-860 nm

(NIR) and 1550-1700 nm (SWIR)[32]. Individual bands in Geo-TIFF format for

each single date were stacked into a single file False Color Composite (FCC) pre-

pared using first three bands. All the spectral bands of three season for year 2011

and 2019, LISS data were used for the land cover classification(Table:2.2).
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Table 2.2: Satellite Data Description

Bhavnagar Panchmahal
Row_Path 93_57 94_56

2011 cycle 2019 cycle 2011 cycle 2019 cycle
Rabi 26-Feb-12 20-Jan-19 07-Feb-12 1-Jan-19
Summer 26-Apr-12 26-May-19 20-May-12 6-May-19
Kharif 11-Oct-12 9-Nov-2018 04-Oct-12 14-Nov-2018

Ground Truth Data

Ground truth data was used to train machine learning algorithms efficiently and

further, validating the results obtained along with multi-spectral satellite images.

Land use land cover map having 16 classes as seen in (Fig.2.2) published by

Bhuvan-ISRO was used as level 1 ground truth dataset[118].

The Desertification Status map (DSM) cycle 2011 and 2019 published map

were used as ground truth dataset for level 2 class(Fig. 2.3)[136]. In order to eval-

uate the classes of Desertification and land degradation, geo-coded LISS III digital

data were analysed utilising on-screen visual interpretation techniques combined

with auxiliary data. In a geographic information system (GIS) context, prelimi-

nary DSM with a scale of 1:50,000 were created for each district. Based on the

National Spatial Framework on 1:50K with LCC projection and WGS 84 datum, a

geodatabase was produced in GIS[154].

2.3 Methodology

The methodology is discussed into three components, namely - land cover classi-

fication, the process of degradation, and severity of degradation. Level 1 involves

land cover classification using multi-spectral remote sensing images. The study

was based on reflectance values using different classification techniques. The aim

is to classify each pixel into one of the 6 land cover classes (Waterbody, Settlement

area, Scrubland, Agricultural land, and Forest area, Barren land).

In Level 2, the aim is to detect degradation processes like salinity, erosion, wa-

ter logging, etc that affect these land types. For the purpose of this thesis, I have
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Figure 2.2: Land Use Land Cover map of Study area of Panchmahal (above) and
Bhavnagar (below) Districts with the legends showing 16 classes and their color
code
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(a) (b)

(c) (d)

Figure 2.3: Desertification Status Map of Study area for two-cycle over 10 years
apart
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Figure 2.4: Methodology flow chart

worked on two processes, namely soil salinity in agricultural land and vegeta-

tion degradation in forest areas. The result is a land degradation process map

distributed in each of the level 1 classes. Level 2 study was based on extraction

of features from satellite images and using them to further assess degradation

processes. In level 3, satellite dataset of year 2019 was used for level 1 and level 2

classification system. And the total area was compared with 2011 map for severity

classification.

Level 1 : Land Cover Classification

Land use land cover mapping involves assigning each pixel of the satellite data

to a particular class. Each class represents a land cover type. In this thesis the

pixels were classified into the following six land cover classes - Agricultural land,

Forest area, Scrubland, Barren land, Settlement, Waterbody. Three Classification

algorithms were attempted,

1. Pixel based classification - Support Vector Machine

2. Convolution Neural Network

3. Object Based Classification
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1. Support Vector Machine

SVM is one of the widely used algorithms for land cover classification using re-

mote sensing data. SVM model has the ability to perform well even with limited

training data, making it a viable option in remote sensing use cases.[113]

SVM works by locating the ideal hyper-plane to classify data points into dis-

tinct groups. This division is based on the idea of structural risk minimization

(SRM), which maximizes and divides the hyper-plane and data points closest to

the hyperplane’s spectral angle mapper (SAM). Both continuous and categorical

variables, as well as linear and non-linear samples with various levels of class

membership, can be handled by SVM. The vectors used in the SVM process en-

sure that the margin between the various classes is maximized. Support vectors

are the training samples that define the SVM’s hyper-plane or margin. The hyper-

plane is defined by the equation,

wx + b = 0 (2.1)

where, w is a vector of weights, x is a data point, b is a bias term.

The kernel function, a crucial part of SVM, is used to precisely establish the

hyper-planes and reduce classification errors. The most popular remote sensing

kernel is the polynomial and radial basis function (RBF) kernel, with the RBF

technique being the most widely used for classifying land use and land cover

(LULC) because it is more accurate than other conventional techniques[101, 103].

The Radial Basis Function (RBF) kernel is defined as:

K(x, x′) = exp(−γ∥x − x′∥2) (2.2)

Here, x and x′ are feature vectors, and γ is the kernel parameter that controls the

shape of the kernel. The RBF kernel measures the similarity between data points

in the feature space.

The decision function for making predictions using the trained SVM with the
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RBF kernel is given by:

f (x) = ∑
i

αiyiK(xi, x) + b (2.3)

Here, b is the bias term.

To do with the problem of skewness and overfitting, a data augmentation tech-

nique called the smote algorithm(Synthetic Minority Oversampling technique) is

applied to the minority class in the training data[34]. This helps in balancing the

ratio of training data belonging to each class. The SMOTE algorithm works by

selecting the data points that are close to the feature space.

2. Patch Based Convolution Neural Networks

The pixel values are scaled between zero and one. This is achieved using a min-

max scalar. For the purpose of the patch-based model, instances are generated

which are equal to the number of pixels in the original data. This involves the

extraction of small three-dimensional patches of fixed size, centered at each pixel.

This helps in taking into account the information of the spatial neighborhood and

not just a single pixel.[29]

Here, the aim is to classify the central pixel by using the local spatial features

from neighboring pixels. This model works well because it is observed that pixels

with the same neighborhood show similar underlying objects. The size of the

patches depends on the extent and resolution of the original image. It was found

that a patch size of 5 works best for the current use case.

Rotation-based data augmentation techniques were carried out to allow the

model to learn varying spatial distributions. Also, since the data is skewed, this

technique helps in increasing the number of data points, especially for classes

with the least data points, thus reducing the problem of overfitting. CNNs learn

representations of original data with varying levels of understanding, thus acting

as feature extractors.[29] Several layers like the convolutional layer, non-linearity

layer, max-pooling layer, and fully connected layers are included in the model.

Figure 2.6 shows the CNN architecture and the corresponding parameters used

to train the classification model.
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Figure 2.5: The rotation-based augmentation process generates the patch that
would be fed to the CNN model

Figure 2.6: Patch Based CNN Architecture
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• The input data in the convolutional layers is convolved with m 2D kernels,

where m is the desired number of convolutional filters. The sum of m convo-

lutional responses produces a feature map. Next, this feature map is passed

through the rectified linear unit(ReLU), a nonlinear activation function.

• The max-pooling layers reduce the number of parameters, computations,

and help in controlling overfitting by selecting superior invariant features.

• The fully connected layers have connections to all the activations in the pre-

vious layers. The results from convolution are converted into a 1D feature

vector. The last layer of the network performs classification using the soft-

max activation function. The output thus obtained gives a probability dis-

tribution that represents the chances of belonging to a particular class.

3. Object-based classification

Fig.2.7 shows the flowchart of the model for object-based classification. It is di-

vided in two phases. In the first phase called as object definition phase, three dif-

ferent segmentation methods eg. Region Growing segmentation, Mean-shift seg-

mentation, and Simple Linear Iterative Clustering (SLIC) algorithms were used

to create objects, and a random forest classifier is used to assign classes to these

objects in second phase as object classification phase.

Phase 1: Object Definition Phase Phase one is for the object definition phase

in which different segmentation algorithms were used for defining objects based

on the reflectance value of single date LISS-IV bands. It is a process of grouping

pixels in which the intent is to simplify the image into meaningful pixel group-

ings called segments or objects. Segments are relatively homogeneous regard-

ing one or more characteristics like shape, size, color, texture etc.[19] Three dif-

ferent segmentation methods eg. Region Growing segmentation[19], Mean-shift

segmentation[122], and Simple Linear Iterative Clustering (SLIC) Segmentation[4]

used to create objects.

The use of segmentation for LULC classification has gained attention in recent

years[180]. Several studies have proposed object-based and improved region-
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growing algorithms combined with machine learning techniques, such as ran-

dom forest and deep learning, for LULC classification[114, 53]. Approaches have

shown promising results and can potentially improve the accuracy and efficiency

of LULC classification in various applications, including environmental monitor-

ing, natural resource management, and urban planning[56].

These studies provide valuable insights into the application of segmentation

techniques for LULC classification using satellite imagery and highlight the im-

portance of selecting appropriate techniques for accurate classification.

Figure 2.7: Object Based classification model flowchart

1. Region Growing Segmentation

A region-growing algorithm-based segmentation was performed. Two pa-

rameters, "similarity" and "area", were used to control the segmentation pro-

cedure. To clarify, "similarity" is a threshold value that determines whether

40



two neighboring objects are merged, while the area threshold is used to filter

out the objects smaller than the established value [19]

In this method, the set of regions in the image is denoted by the symbol

R, and an individual region is represented by R ∈ R. The threshold value

below which two regions are considered similar at a particular instant t is

denoted by T(t). The mean value vector of a region is represented by Mi,

and the Euclidean distance between the spectral mean values of two regions

Ri and Rk is represented by D(Ri, Rk) = ||Mi − Mk||. The set of neighbor-

ing regions of a region R is denoted by N(R). The segmentation process

involves the following stages:

• Initially, a list of regions Ri, i = 1, ..., n(n = numbero f pixelsniimage) is

created, with each region composed of a seed pixel. For each region Ri,

its mean value vector and neighboring regions are stored.

• For each region Ri, its neighboring regions N(Ri) are examined, and

the most similar neighboring region Rk ∈ N(Ri) is chosen. If the simi-

larity between the two regions is below the threshold value D(Ri, Rk) <

T(t), the neighboring region is considered the best neighbor of the cur-

rent region.

• If the best neighbor of a region exists, the two regions are merged, and

the best neighbor is removed from the list.

• The mean value vector of the resulting region is updated every time

two regions are merged.

• The process is repeated until no joinable regions remain.

• In the final step, small regions are merged with larger adjacent regions,

according to an area threshold value defined by the user.

2. Mean-Shift Segmentation

Mean-shift segmentation Mean-shift algorithm was introduced by Fuku-

naga et.al.[60]. It is a versatile, non-parametric density gradient estimation

for mode finding or clustering procedure.
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For each data point, the mean shift defines a window around it and com-

putes the mean of the data point. Then it shifts the center of the window

to the mean and repeats the algorithm till it converges. After each iteration,

we can consider that the window shifts to a denser region of the dataset. At

the high level, we can specify Mean Shift as follows:

• Initialize a random seed point and fix a window.

• Compute the mean of data within the window.

• Shift the window to the mean and repeat till convergence

3. Simple linear iterative clustering (SLIC)

Simple Linear Iterative Clustering, SLIC is similar to the k-means and mean

shift algorithms regarding being both gradient-ascent-based algorithms and

unsupervised data clustering algorithms. SLIC creates dense and homoge-

nous superpixles with a minimal effort and complexity. It also provides

control over the number and compactness of superpixles, features that are

highly preferable. Thus, it is one of the most commonly used algorithms

for image segmentation. We can consider SLIC as a special version of the

k-means with two crucial differences, which provide major enhancements

in the performance. First, in the k-means algorithm, the search region is the

whole feature space meaning every centroid is compared to every point/pixel

in the space resulting in relatively higher complexity. In contrast, SLIC per-

forms local clustering in which a limited region is defined as the search

space contributing to lowering the computational cost. Second, SLIC in-

troduces a new distance measure that takes into account not only the spatial

but also spectral distance offering at the same time the feature of controlling

the number and compactness of the superpixels[190, 195]

• The distance measure is constructed by a v-dimensional vector includ-

ing the spectral feature vector (band1, band2, ..., bandv−2) and the pixel

position coordinates (x, y).

• Suppose the total number of pixels of the image is N, and it is planned

to be divided into the same number of segments K, thus the size of each
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segment is N/K and the distance between every two adjacent segments

S ≈
√

N
K .

• Choose K cluster centers Ck = [band1k
, band2k

, ..., band(v−2)k
, xk, yk]

T where

k = [1, K] at regular grid intervals S. The computational formula of dis-

tance measure is

dspatial =
√

(xi − xk)2 + (yi − yk)2

dspectral =
√

(band1i
− band1k

)2 + ... + (band(v−2)i
− band(v−2)k

)2

Ds = dspectral +
m
S dspatial

where, Ds denotes the normalized distance measure; dspectral denotes

the Euclidean distance of the spectral feature vector (band1, band2, ..., bandv−2),

dspatial denotes the Euclidean distance of pixel (xk, yk) and pixel (xi, yi)

in the image plane; m is a variable to control the compactness of a seg-

ments.

The greater the value of m, the more important spatial proximity and the

more compact the cluster. Experience indicates that the optimal range of

values for m is [1,20], which can get a good tradeoff between spatial similar-

ity and spatial proximity[4].

Phase 2: Object Classification Phase Phase 2 is for the classification of objects

and was performed using RF classifier with a train-test ratio of 0.7:0.3. Random

Forest is an ensemble machine learning algorithm that is used for both regres-

sion and classification problems. The key idea behind Random Forest is to build

multiple decision trees and combine their predictions to get a more accurate and

stable result. The Random Forest algorithm is known for its ability to handle

large datasets with high dimensionality and for its robustness to overfitting. For

classifying object/segments multidate temporal four bands LISS data were used.

In classification, majority class values were selected as final object class. Classi-

fication is performed on objects instead of pixels. Algorithms operate on many

object-related features than typically available with pixel-based approaches. Re-

duces salt and pepper effect of classifications and speeds up processing.
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Level 2: Degradation Process classification

Feature-based classification is performed using pixel-based Random Forest and

Support vector Machine classifier to identify different degradation processes.

Vegetation Degradation in Forest Area

As a result of deforestation and/or overgrazing, vegetation degradation is de-

fined as a decrease in biomass and/or a decline in the vegetative ground cover.

With relation to soil erosion and the loss of soil organic matter, such degradation

is a significant contributor to land degradation. The protection of land and the

fertility of the soil are significantly influenced by vegetation. Vegetation degrada-

tion speeds up soil degradation, which then speeds up land degradation. When

organic material is lost, the soil’s ability to store water and its nutrient content are

decreased, which puts further stress on vegetation viability. Agriculture practiced

on forestland is likewise categorized as contributing to vegetation degradation.

Southeastern and central parts of Gujarat have dry deciduous forest cover.

Forest cover in Shehra, taluka of Panchmahal district is classified into 3 categories,

namely- Scrub forest, Open forest and Moderate dense forest. The Forest Survey

of India map was used as a training dataset. The classification of these forest

types is shown in table 2.3. Forest area in Shehra Taluka is selected for vegetation

degradation.

Level 2 classification refers to a more specific categorization or classification

system used for identifying vegetation degradation in a forest. It is described as a

feature-based classification.

Feature-based classification means that certain features or characteristics of

the vegetation are used as indicators or criteria for categorizing and identifying

the degradation. In this case, two specific features or indices are used: NDVI

(Normalized Difference Vegetation Index), GNDVI (Green Normalized Difference

Vegetation Index)[134].
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Normalized Difference Vegetation Index (NDVI)[169]:

NDVI =
NIR − Red

NIR + Red
(2.4)

Green Normalized Difference Vegetation Index (GNDVI)[61]:

GNDVI =
NIR − Green

NIR + Green
(2.5)

Here, NIR represents the reflectance value in the near-infrared region, Red and

Green represents the reflectance value in the red and green region respectively.

Table 2.3: Vegetation degradation in forest area classification scheme

Forest Type Classification scheme

Scrub Forest Forest areas with poor tree growth having canopy cover
less than 10% .

Open Forest Forest areas having canopy cover between 10% and 40%.
Moderate dense Forest Forest areas with tree cover having canopy cover be-

tween 40% and 70%.

NDVI is a widely used index in remote sensing and vegetation studies. It

measures the difference between the reflectance of near-infrared (NIR) and red

light, providing an estimate of the vegetation greenness and health. NDVI values

range from -1 to 1, with higher values indicating healthier and more abundant

vegetation[76, 44].

GNDVI is similar to NDVI but focuses specifically on the green band of the

electromagnetic spectrum. It measures the difference between the reflectance of

green light and NIR, providing a more targeted assessment of the vegetation’s

greenness and health[133, 42].

By utilizing these two indices (NDVI and GNDVI), it becomes possible to an-

alyze and classify the vegetation in a forest area.

Salinity in Agriculture Area

Alkalinity or salinity is the primary chemical characteristic of soils. The salt

that can dissolve in water that is present in the soil is known as salinity. Salinity

can arise naturally or as a result of human activity. It occurs primarily in culti-
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vated regions, particularly in the areas that are irrigated. While alkalinization is

not always visible and is typically assumed based on ground truth, soil sample

analysis, and information or published maps, there are instances where salinity

is readily visible on satellite pictures. Excessive evapotranspiration, drought, ex-

cessive irrigation, and an increase in toxicity are the main causes of salinity. By

means of capillary action, salts from the groundwater are brought to the soil’s

surface. As time passes, water evaporation leaves the salt on the soil’s surface.

Three soil salinity indices, Normalized Differencial Salinity Index(NDSI), Salin-

ity Index(SI), Vegetation Soil Salinity Index (VSSI) [84, 45] were identified and

calculated as,

Normalized Differential Salinity Index (NDSI):

NDSI =
RED − NIR

RED + NIR
(2.6)

Salinity Index (SI):

SI =
√

NIR ∗ Red (2.7)

Vegetation Soil Salinity Index (VSSI):

VSSI = 2 ∗ GREEN − 5 ∗ (RED + NIR)(2.8)

Here, NIR represents the reflectance value in the near-infrared region, RED

and GREEN represents the reflectance value in the red and green region respec-

tively.

VSSI takes into account both the soil salinity characteristics captured by NDSI

and the vegetation-related information represented by SI, providing a comprehen-

sive index for assessing soil salinity while considering the vegetation’s influence.

These equations utilize reflectance values in specific spectral bands, such as

NIR, red, and green, to calculate the respective indices. By applying these indices

to multi-temporal LISS-III data, the study aimed to map and analyze soil salinity

patterns in Bhavnagar district, Gujarat.
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Level 3: Severity status

The severity of a degradation process can be determined by comparing two dif-

ferent time frames of data, here the degradation process’ severity was determined

using data from 2011 and 2019. To evaluate the severity of the degradation pro-

cess, the total area affected over both time frames was calculated and compared.

The threshold for percent area change to classify its severity level is shown in

Table 2.4.

Table 2.4: Percentage area under different severity conditions for desertification

Change in Area Severity Level

< 10% Low
10% − 20% Medium

>20% High

For example, the severity level is considered low if the percentage change is

less than 10%. Any percentage change between 10% and 20% is considered signif-

icant. The severity level is high if the percentage change exceeds 20%. It is simpler

to categorize the severity level of the degradation process based on the percentage

change in the affected area by using these thresholds. Using this knowledge, ap-

propriate mitigation strategies for the effects of the degradation process can then

be developed.

2.4 Results & Discussion

Desertification status and severity were calculated using the proposed three-stage

algorithm. In level 1 classification of land cover were performed using three dif-

ferent methodology. Object-based image classification is one of the method, in

which three segmentation algorithms were used: Region Growing, Mean-shift,

and SLIC. Random forest is then used to label the objects created in the segmen-

tation part. Table 2.5 show the accuracy comparison of different segmentation

methods for Level 1 land cover classification. Based on the results, SLIC appears

to be the most accurate segmentation method for Level 1 land cover classification,
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with an accuracy of 80%. The mean shift comes in second with an accuracy of

78%, and Region Growing is the least accurate with an accuracy of 71%.

Table 2.5: Accuracy comparison of different segmentation methods for Level 1
Land cover object creation with Random forest classification (values in %)

% Region Growing Mean-shift SLIC

Accuracy 71 78 80
Kappa 45 63 68

Precision 70 78 78
Recall 71 79 80

F1 score 69 78 78

Table 2.6: Level 1 Land Cover classification accuracy using three different algo-
rithms (values in %)

Model SVM Patch based CNN SLIC + RF

Accuracy 72 79 80
Precision 71 70 78

Recall 73 79 80
F1 Score 71 74 78

Table 2.6 presents the results of three different algorithms for land cover classi-

fication: Support Vector Machine (SVM), Patch-based Convolutional Neural Net-

work (CNN), and SLIC (Simple Linear Iterative Clustering) combined with Ran-

dom Forest (RF). First, it is important to note that all three algorithms achieve rel-

atively high accuracy scores, with the SLIC+RF approach performing the best at

80%. The precision and recall scores for all three models are also quite high, with

the SLIC+RF approach again outperforming the other two in terms of precision

and recall. Looking at the F1 score, which is a measure that combines precision

and recall, we can see that the patch-based CNN approach performs better than

the SVM approach, but still falls behind the SLIC+RF approach. It’s also worth

noting that while the differences in accuracy between the three models are rel-

atively small, the SLIC+RF approach consistently outperforms the other two in

terms of precision, recall, and F1 score. SVM is a straightforward model with

moderate accuracy, low computational complexity. Patch-based CNN is a more

intricate, more accurate model, but it uses more computing power. SLIC+RF
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is a hybrid model that first extracts features with a segmentation algorithm be-

fore classifying data with a random forest classifier. In comparison to CNN, it

achieves high accuracy and is computationally simpler. These results suggest that

the SLIC+RF approach is a promising method for land cover classification, par-

ticularly in terms of its ability to achieve high precision and recall scores. Object-

based classification typically results in more cohesive and smooth polygons rep-

resenting different land cover classes, as compared to pixel-based classification

where each pixel is classified independently and can result in fragmented and ir-

regular patches of land cover. Object-based classification is based on grouping

similar pixels together to form objects and classifying these objects based on their

attributes, which can result in more accurate and visually appealing land cover

maps. Fig.2.8 shows the visual comparison between SLIC with RF classified re-

sults with GT class map for level 1 land cover classification.

SLIC segmentation with RF classifier was used as the final model for level 1

classification of land cover for both study areas. The object-based classification

results for two different terrains show that the overall accuracy for both areas is

good, with Bhavnagar having a slightly higher accuracy (85%) than Panchmahal

(80%) as seen in table 2.7. The classification accuracy for Bhavnagar is higher

than that of Panchmahal. This could be attributed to the fact that Bhavnagar has a

relatively flat terrain with uniform agricultural and open land cover, which makes

the classification process less complex and more accurate. On the other hand,

Panchmahal has a moderate undulating terrain with heterogeneous land cover,

which makes it more challenging to accurately classify the different land cover

types. This can be seen from the lower F1 score for Panchmahal compared to

Bhavnagar. Therefore, the results suggest that the complexity of the terrain and

the heterogeneity of the land cover can significantly affect the accuracy of the

object-based classification.

The desertification process was identified in level 2 classification using RF and

SVM algorithms. As discussed two different areas having different degradation

processes were classified. In the classification of forest vegetation degradation,

the models used the vegetation index to identify the extent of vegetation cover.

49



(a)

(b)

Figure 2.8: Level 1 classified Map using (a) SLIC segmentation comparison with
(b) original GT class map for part of study area
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Table 2.7: Object based classification result for two different study area(values in
%)

Area Panchmahal Bhavnagar

Accuracy 80 85
Precision 78 81

Recall 80 83
F1 Score 78 81

Similarly, in the classification of soil salinity, the models used a soil salinity in-

dex to identify the affected areas. The SVM and RF models used this index to

classify both degradation areas. The classification results show that both models

performed well in both areas, with RF showing higher accuracy in both cases.

For forest vegetation degradation, the SVM model achieved an accuracy of 79%,

while the RF model achieved a higher accuracy of 85%. The precision and recall

scores were also higher for the RF model, indicating that it performed better in

correctly identifying both positive and negative samples. For soil salinity, both

models performed well with the RF model achieving a slightly higher accuracy

of 81% compared to SVM’s accuracy of 78%. The precision and recall scores were

similar for both models, with RF having a slightly higher precision score and SVM

having a slightly higher recall score.

Table 2.8: The classification results for forest vegetation degradation for two
model performance (values in %)

Model SVM RF

Accuracy 79 85
Precision 71 85

Recall 78 85
F1 Score 69 84

Overall, the use of vegetation and soil salinity indices in classification mod-

els provides a more objective and accurate way to identify areas of degradation.

These indices can capture subtle changes in the vegetation and soil conditions

that may not be apparent to the naked eye. The SVM and RF models were able

to leverage these indices to achieve high accuracy in the classification of forest

vegetation degradation and soil salinity.

51



Table 2.9: The classification results for soil salinity for two model performance
(values in %)

Model SVM RF

Accuracy 78 81
Precision 78 79

Recall 77 78
F1 Score 78 79

Table 2.10: The degraded areas change for two different year (Area in %)

Study Area Degradation Process 2011 2019

Bhavnagar Salinity 13.47 12.84
Panchmahal Vegetation Degradation 16.74 17.28

Above level 1 and level 2 classification were performed on two dataset of year

2011 and 2019. As seen in table 2.10, The results indicate that in Bhavnagar, there

was a decrease in the extent of salinity from 13.47% in 2011 to 12.84% in 2019. This

may be attributed to improved agricultural practices or other irrigation resources

in replace of ground water. On the other hand, in Panchmahal, there was an

increase in the extent of vegetation degradation from 16.74% in 2011 to 17.28%

in 2019. This may be due to various factors such as deforestation for agricultural

land or urbanization leading to loss of vegetation cover.
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CHAPTER 3

Predictive Soil modeling

The quality and productivity of soil have declined in recent decades due to pop-

ulation growth, climate change, and poor land management practices[24]. Soil

degradation causes desertification and severely reduces potential land productiv-

ity. Large population growth, food security, land degradation, freshwater scarcity,

threatened biodiversity, climate change, and sustainable development are just a

few of the major issues the globe is facing in the twenty-first century [58]. A

soil’s physical and chemical properties affect plant growth and soil management

practices. Agricultural production depends on healthy soils that can provide nu-

trients, support plant growth, and retain water. Soil degradation, which is the

process of soil quality degradation, can lead to reduced crop yields and food se-

curity concerns[151].

India faces significant challenges in soil management due to its population

growth, land degradation, and food demand, as well as the diversity of soil groups

across the country[2]. With 86.08% of agricultural land holdings being small

and marginal, conventional soil maps are not sufficient to manage the small land

holdings[3].

Therefore, predictive soil modeling(PSM) using digital technology can be a

valuable tool in assessing soil quality in India. Some important properties of soil

are mineral content, texture, cation exchange capacity, bulk density, structure,

porosity, organic matter content, carbon-to-nitrogen ratio, color, depth, fertility,

and pH.

modeling soils is a crucial first step in decision-making for agriculture, but

conventional soil modeling is based on expert knowledge[75] of soil surveyors
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that ignore variations within classes and are time-consuming[89]. However, tra-

ditional soil mapping methods are labor-intensive, expensive, and primarily rely

on taxonomic classification instead of quantifying soil properties. These maps are

challenging to understand and utilize for non-soil scientists.

Predictive Soil Modeling (DSM)[106, 65, 140] is a new approach that uses pre-

dictive factors to estimate soil properties at locations where sampling has not oc-

curred. Unlike conventional soil maps, digital soil maps provide estimates of

accuracy and uncertainty and support precision agriculture[110]. These methods

use statistical and digital mapping techniques to quantify and analyze soil prop-

erties, allowing for better land management decision-making[10].

For mapping regions with few soil observations, conventional techniques that

employed soil maps as the foundation for soil properties estimates are still in

use[18]. However, over the past few years, predictive soil modeling technology

has advanced quickly, enabling it to be used for routine mapping across vast ar-

eas [106, 28, 65, 168], which combines soil survey data with geographic informa-

tion systems, geostatistics, terrain analysis, machine learning, remote sensing, and

high-performance computers to predict soil properties [110, 9]. By using numeri-

cal models to infer the geographical and temporal variations of soil types and soil

properties from soil observation and knowledge of related environmental vari-

ables, PSM is defined by Lagacherie et.al. [90] as "the design and populating of

spatial soil information systems."

Current approaches in modeling soil characteristics explicitly account for spa-

tial variation of Jenny’s soil forming factors and for possible spatial auto correla-

tion. Such approaches were termed digital soil modeling and formalized in so-

called "SCORPAN" models[106], where "SCORPAN" stands for

S = f (s, c, o, r, p, a, n) (3.1)

where, s = soil, c = climate, o = organisms, r= relief, p= parent material, a =

age/time, and n = spatial geographic location information(eg. latitude, longitude

& altitude).

This approach has been used with machine learning algorithms for the pre-

54



diction of soil properties. As traditional methods based on field measurements

cannot be performed in every region. ML models can be used to provide better

spatial coverage based on limited field data points.

In this study, three important soil properties were selected for the prediction

of Soil Organic Carbon (SOC), Soil pH and Soil Electric Conductivity (SEC).

The greatest known repository of terrestrial carbon is soil carbon[17, 152].

Comparing its global storage capacity to the carbon reserves in the atmosphere

and plants, it is far greater. Soil organic carbon plays a significant part in many soil

biological system administrations. Significant focus has been placed on soil’s ca-

pacity to store large amounts of atmospheric carbon as a potential means of reduc-

ing the negative impacts of rising levels of greenhouse gases in the atmosphere[152,

36, 145]. Soil organic carbon influences the physical and chemical properties of

the soil, for example, water permeability, soil moisture holding capacity, supple-

ment accessibility, and microbial organic movement[123]. SOC also plays a dy-

namic role in the worldwide carbon cycle and environmental change[163]. Soil

is a significant wellspring of carbon in earthly environments and manages soil

well-being and usefulness.

Soils can be normally acid or alkaline, and this can be determined by testing

their pH value. A pH number is really a proportion of hydrogen ion (H3O+)

fixation. Most soils have pH values somewhere in the range of 3.5 and 10. In

higher precipitation regions the regular pH of soils commonly goes from 5 to 7,

while in drier regions the reach is 6.5 to 9. Soil pH influences the measure of

nutrients and chemical substances that are dissolvable in soil water, and hence

the measure of supplements accessible to plants. A few supplements are more

accessible under acidic conditions while others are more accessible under alkaline

conditions. In any case, most mineral supplements are promptly accessible to

plants when soil pH is close to neutral[188].

Soil electrical conductivity (SEC) is a measure of the soil’s ability to transmit or

attenuate electrical current. It is a measure of the amount of dissolved salts in the

soil. EC is measured in deciSiemens per meter(dS/m). Soil scientists have been

using EC as an indicator of soil salinity. It is a significant indicator of soil well-
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Table 3.1: Ranges for soil sample test values used in soil rating for SOC, pH, and
SEC[33]

Rating
OC

Rating pH range Rating
EC

range (%) range (dS/m)
Low <0.50 Extremely acid <4.5 Normal <1.0
Medium 0.50-0.75 Very strongly acid 4.5-5.0 Tending to become saline 1.0-2.0
High >0.75 Strongly acid 5.1-5.5 Saline 2.0-3.0

Medium acid 5.6-6.0 Highly saline >3.0
Slightly acid 6.1-6.5
Neutral 6.6-7.3
Mildly alkaline 7.4-7.8
Moderately alkaline 7.9-8.4
Strongly alkaline 8.5-9.0
Very strongly alkaline >9.0

being. as it affects crop productivity. The presence of salt in the soil is a major

reason for soil degradation that can decrease soil fertility. The SEC can be used as

a measure of soil salinity[124].

Table 3.1 provides ranges for soil sample test values used in soil rating for three

parameters: soil organic carbon (SOC), pH, and electrical conductivity (EC)[33].

These ranges are used to categorize soil samples into different ratings based on

their measured values.

3.1 Study Area

North Gujarat Agro climatic zones is selected as study area. Soil of this area is

sandy loam to sandy soil. Land productivity is very low in this area; most com-

mon crops are wheat, vegetables, spices, oil seeds and tobacco. Rainfall is also

average less than 1000 mm annual the climate of this area is arid to semi arid and

soil is grey brown alluvial and more than 50% of area is cultivated and out of this

area nearly 30% area is irrigated having main source of irrigation is groundwater.

3.2 Soil Sampling

In-situ soil samples were collected from Soil Health Card data from government

for the north Gujarat agro-climate zone. Soil health card sampling data were used

as soil sample. State agricultural university collected and processed these soil
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samples. Total 1840 soil samples were used in this study. Soil samples were ex-

tensively collated over more than one year period and all the samples were than

lab analysed for soil properties. Nearly 10 soil property information were anal-

ysed in lab including soil N, P, K, SEC, pH and SOC with soil micronutrients as

well. For this study we used three main soil parameters eg. SEC, pH and SOC.

These properties were categorized as per the rating limit given in Table 3.1[1] and

Table 3.2 shows the statistics of the selected soil properties.

Properties class Sample Min Max Mean St. Dev. Median Kurtosis Skew

OC (%)
Train 1476 0.06 1.67 0.39 0.18 0.38 5.55 1.46
Test 369 0.14 1.72 0.43 0.19 0.40 10.50 2.33

pH
Train 1476 3.95 9.51 7.82 0.61 7.85 1.18 -0.42
Test 369 6.19 9.76 7.88 0.55 7.87 0.54 -0.01

EC (ds/m)
Train 1476 0.06 1.76 0.37 0.25 0.29 3.59 1.78
Test 369 0.10 1.71 0.41 0.28 0.32 3.97 1.94

Table 3.2: Descriptive statistics of soil properties in the topsoil of the north Gujarat
Agro-climatic zone

3.3 Covariates selection & preparation

Soil research has shown that soil profiles are influenced by five separate, yet

interacting, factors: parent material, climate, topography, organisms, and time.

Soil scientists call these the factors of soil formation. These factors give soil pro-

files their distinctive character. The soil genesis and geographic variation of soils

could be explained by the combined activity of the five natural factors called as

soil forming factors[51]. These factors form under complex interactions between

climate, living organisms and anthropogenic influences, modified by relief and

hydrological processes and operating over long periods of time. This has been

clearly identified first by Jenny (1994) with his CLORPT factors of soil formation

and subsequently extended by McBratney et. al.[106] with the SCORPAN formu-

lation.

The equation 3.1 simply states that the soil type or attribute at an un-visited

site (S) can be predicted from a numerical function or model (f) given the factors

just described plus the locally varying.[106]
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The relevant soil information obtained from remote sensing (RS), proximal

sensing, and legacy soil maps can be used to represent soil in DSM. [192].

The DSM activities use the Worldclim database, which provides various climate-

related variables such as temperature, precipitation, temperature seasonality, and

precipitation seasonality[156, 155, 48, 46, 47, 121].Lamichhane et al. have demon-

strated the usefulness of automatic weather stations for DSM activities[94]. Organism-

related covariates include variables related to vegetation, soil fauna, and human

activities such as land use and management practices. Vegetation and land use[111,

74, 156]. In recent years, products derived from both conventional and remote

sensing (RS) have been used to extract organism-related covariates. Land use

land cover (LULC), Normalised Difference Vegetation Index (NDVI), and En-

hanced Vegetation Index (EVI) are some of the covariates commonly used to rep-

resent ’O’ in the SCORPAN[156, 155, 47, 149, 74, 92, 121]. As potential covariates,

band reflectance values and band ratios from various satellite imageries such as

MODIS, Landsat, and Sentinel have been used[92, 47, 196, 197]. Relief (topog-

raphy) is another important predictor of DSM, particularly at smaller mapping

scales. Relief influences soil microclimate and thus soil characteristics. The major-

ity of DSM studies have derived terrain attributes from various Digital Elevation

Models (DEMs), such as the SRTM DEM, Cartosat DEM, ASTER DEM, and ALOS

DEM[87, 47, 141, 111, 131, 92, 149, 187, 82].

Covariates representing parent material (P) account for very low of all envi-

ronmental covariates used in DSM in India. Sreenivas et al.[155] and Mitran et

al.[111, 155, 47] used geological data from the Geological Survey of India as co-

variates for DSM. Finally, spatial position (N) has only been used in a few studies.

Studies that have considered spatial position as a covariate for DSM[149, 187].

In the present study of predictive soil modeling, the following sets of variables

were taken into account as shown in Table 3.3.

Feature Selection is the strategy for reducing the input covariates by utilizing

just relavant data and disposing of non relavant data. It is the process of deciding

which features to include in your machine learning model according to the kind

of issue you are attempting to resolve. It is accomplished by adding or removing
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Table 3.3: Soil covariates used for study

Category Data description Source

Soil Maps Soil Texture, Parent Material NBSS-LUP data
Vegetation NDVI, MODIS-Terra Sensor data

FPAR,
EVI,
LAI

Climate Temperature, Terra Climate data from
Rainfall, Google Earth Engine, Terraclimate,
Soil temperature a high-resolution global dataset [179]
Wind, of monthly climate and climatic
Solar Radiation, water balance

Relief Elevation, CartoDEM (Bhuvan- ISRO)
Aspect,
Slope

Soil Samples SEC, pH and SOC Soil Health Card Data
( State Agricultural University)

significant features without altering them. It assists in minimising the amount of

noise in raw data and the quantity of input data. The more features or elements

there are in a feature set, the harder it is to visualise and operate with the train-

ing set. The fact that many of the features are often correlated is another crucial

thing to keep in mind. Therefore, if you include every variable in the feature set

in your training set, many of them will be redundant. Recursive feature elimi-

nation (RFE)[69] is essentially a regressive determination of the indicators. This

algorithm begins by building a model in general course of action of covariates

and calculating an importance score for each covariate. The most in-critical pre-

dictor(s) are then disposed of, the model is re-gathered, and significance scores

are figured again. In this manner, the algorithm shows the quantity of covariates

subsets to evaluate also every subset’s size.

3.4 Methodology

Predictive soil modeling involves a series of steps to generate accurate soil maps.

Figure 3.2 shows the flow chart of the methodology used in the study. The pro-

cess begins with defining the study area and acquiring relevant data, including
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soil samples and remote sensing and in-situ data. Data preprocessing is then

performed to clean and prepare the stack of data for analysis. Next regression

matrix is created by flattening the data and a predictive model is developed using

techniques such as regression or machine learning. The model is trained and val-

idated using available data and then applied to predict soil properties or classes

across the entire study area. Spatial interpolation may be used to create continu-

ous maps if necessary. The accuracy of the predicted soil maps is evaluated, and

the results are interpreted and visualized to identify patterns and areas of interest.

The process can be iterated and improved as needed.

Machine learning approaches, like multiple linear regression, random forest

regression, Regression kriging, GAM and neural network, were applied for the

prediction. Before applying these algorithms soil sampling data were split in two

sets. In one set, data were used to develop a model and explore relationships

among the covariates and the target soil parameters known as the training set.

The second set is the final arbiter of the covariates or model combination perfor-

mance known as the test set. All 1840 soil samples were separated into two parts, a

training dataset and a testing dataset with a 70:30 ratio respectively using random

sampling. The training set is utilized to create models and the test set is utilized

distinctly at the end of these process for assessing a final and fair evaluation of

the model’s performance. It is important that the test set not be utilized preced-

ing this point. Machine learning algorithms[106] like multiple linear regression

[146, 26, 78], Generalized Additive Models (GAM)[105, 20], Regression kriging

[71, 66, 21, 159, 107], Random forest [23, 97]. An Artificial Neural network algo-

rithm was developed from scratch for soil properties prediction. The advantage

of the neural network over the other methods is backpropagation. Through the

backpropagation concept, the model relearns the weights for each input and pre-

dicts a more significant value[59, 96, 50]. Detailed prediction model approaches

are discussed below. We are beginning by discussing the primitive ML models on

this data set.
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Multiple Linear Regression (MLR)

By fitting a line to the observed data, regression models are used to describe rela-

tionships between variables. Linear regression is simplest method for prediction.

Numerous studies used this method of regression.[146, 26, 78] Using environmen-

tal covariates and soil properties the least square relation is to be established and

weight matrix is calculated and the same weight matrix is used for unknown lo-

cations and soil properties are predicted. Relation between covariates and soil

properties is assumed to be linear in this model.[26] To calculate the association

between two or more independent variables and one dependent variable, multi-

ple linear regression as shown in eq.3.2 is used.

y = β0 + β1X1 + β2X2 + ... + βnXn + ϵ (3.2)

where y = dependent variable predicted value, β0 = the y-intercept (value of y

when all other parameters are set to 0), β1 = the regression coefficient of the first

independent variable (X1), βn = the regression coefficient of the last independent

variable, ϵ = model error

Generalized Additive Models (GAM)

A GAM is an extension of a generalized linear model that allows for non-linear

relations between covariates and the response variable. They provide a modeling

approach that combines powerful statistical learning with interpretability, smooth

functions, and flexibility. It is made out of a number of smooth functions of co-

variates.

GAMs is by Trevor et.al.[70] and mathematically represented as:

y = α + f1(X1) + f2(X2) + ... + fp(Xp) + ϵ (3.3)

where y = dependent variable predicted value, α = the y-intercept, X − 1, X2, ..., Xp

= the predictor variables, f1, f2, ..., fp = smooth functions that relate each predictor

variable to the response variable, ϵ = model error.
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the smooth functions f1, f2, ..., fp can be modeled using different types of smooth-

ing techniques such as splines loess or generalized cross-validation. These tech-

niques allow the functions to take on any shape including non-linear and non-

monotonic shapes and can capture complex relationships between the predictor

variables and the response variable.

Regression Kriging (RK)

Regression Kriging (RK) is an interpolation technique that predicts the spatial dis-

tribution of soil properties by combining geostatistical methods and regression

models. After fitting a regression model with environmental covariates and the

target variable, RK uses the Kriging method to interpolate the residuals[71]. A hy-

brid approach of regression and kriging of residuals has been performed in some

of the articles[67, 112, 142, 49, 15]. These studies demonstrate that RK has the po-

tential to predict soil properties and map the spatial distribution of soil properties.

Other studies have found that prediction models combined with residual Kriging

yielded better prediction accuracy for soil properties.[159, 21, 107].

Regression kriging is combination of two methods as describe above and they

are explain as,

1. Regression modelling First the regression model fit on the data as explained

in MLR section above using the equation,

y = Xβ + ϵ (3.4)

where y = dependent variable predicted value, X = the predictor variables

vector, β = vector of regression coefficients, ϵ = vector of residuals. The re-

gression coefficients were estimated using linear regression and the random

forest method.

2. Residual modeling

The residuals, epsilon, from the regression model are modeled using kriging

to capture any spatial correlation in the data. The kriging estimator of the
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residual at an unknown location s is given by:

ϵ(s) = ∑(wi ∗ [yi − Xi ∗ β]) (3.5)

where, wi is the kriging weight assigned to the ith observation, yi is the ob-

served response variable at location i, and Xi is the vector of predictor vari-

ables at location i.

The next step is to combine the regression and kriging model predictions to

produce the dependent variables y at an unknowm location s:

y(s) = x(s) ∗ β + ϵ(s) (3.6)

where X(s) is the vector of predictor variables at site s, beta is the vector of re-

gression coefficients derived from the training data, and epsilon(s) is the residual

kriging estimate at location s.

Random Forest (RF)

A popular machine learning method for classification and regression is the Ran-

dom Forest algorithm[128, 161]. It builds an ensemble of decision trees based on

different subsets of the training data and averages their predictions to improve

accuracy and control overfitting. The algorithm is based on the bagging concept,

which entails creating bootstrap samples of data and fitting decision trees to each

sample. Because of its high accuracy and ability to handle complex data, it is

a valuable tool for soil scientists and environmental practitioners and is used in

many predictive studies[72, 88, 48, 47, 149].

A random forest’s decision trees are constructed from the top down, with the

algorithm recursively splitting the data into smaller subsets based on the features

that best separate the classes or minimise the variance of the target variable. Each

split is selected according to a criterion such as information gain or mean squared

error. The trees are grown until they reach a stopping criterion, such as a maxi-

mum depth, a minimum number of observations per leaf, or a criterion improve-

ment of a certain amount. After all of the trees have been built, they are used to
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predict the class or value of a new instance. Based on the features and path it

takes through the tree, each tree predicts a class or value. The predictions from all

of the trees are then combined to yield the final prediction. The predicted class for

classification tasks is the mode or most frequent class among the tree predictions.

The mean or median of the data is used for regression tasks[97, 23].

Artificial Neural Network(NN)

An artificial neural network is a machine learning model that is based on the struc-

ture and operation of the human brain. It is made up of interconnected neurons

that are organized into layers, with each neuron performing a simple calculation

on its input and passing the result to the next layer until the final output is pro-

duced. ANN is also capable of establishing non-linear relationships among co-

variates and handling complex datasets[120, 165, 81].

The neural network concept is founded on three major steps, which are as

follows:

1. Multiply input xi to weight wi for each neuron in a layer. Each neuron in a

layer receives inputs from the previous layer or input data, which are mul-

tiplied by their weights. After multiplying the inputs by the weights, the

products are added together for each neuron in the layer, which is same as

dot product of the row vector of input (X = [x1, x2, ..., xn]) with a row vec-

tor of weight (w = [w1, w2, ..., wn]). This yields a weighted sum of inputs,

which serves as the activation function’s input.

∑ = X · w = (x1 ∗ w1) + (x2 ∗ w2) + ... + (xn ∗ wn) (3.7)

2. Add offset/bias b to the dot product of row vectors of input and weights.

Y = X · w + b (3.8)

3. The weighted sum output is then passed through an activation function to

introduce nonlinearity into the model and generate the neuron output. The
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bias term is added to the weighted sum to shift the activation function’s

output. The activation function’s output is used as the input to the next or

final layer. The activation function’s output is used as the input to the next

layer or as the model’s final output. Here we used ReLU activation function,

f (x) =







0 f orx ≤ 0

x f orx > 0
(3.9)

The neural network model proposed here has three hidden layers. The input fea-

ture dimension is reduced by selecting the most important features for learning

from among the available features using RFE. The dimension of the input is 37.

The hidden layers are made up of 29, 11, and 4 neurons, respectively. In the out-

put layer, which consists of one neuron that indicates the predicted soil property

value, the identity function is used. The ReLU activation function is used by all of

the other layers to introduce non-linearity and improve predictive performance.

Dropout is also included in hidden layers to prevent overfitting. They each

have a dropout probability of 0.3 or 0.4. To achieve the highest precision in pre-

dicting the values, various optimizers are tested.

The mean square error (MSE) is used to evaluate the final predictions. In ad-

dition, batch normalization was used in the model. During training, an adap-

tive learning rate was used to improve the model. To properly set the hyper-

parameters, different values of dropout probability and percent reduction in learn-

ing rate after certain epochs were tested. Overfitting occurs when the dropout

value is too low, and underfitting occurs when the value is too high.

The model ensures that the network learns independently of the other lay-

ers. Backpropagation is one of the neural network’s advantages over other meth-

ods. Backpropagation is a learning algorithm that adjusts the weights of the net-

work’s neurons based on the difference between the predicted and actual output.

The network can learn to make better predictions by propagating the error back

through the network and adjusting the weights.
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3.5 Result & Discussion

It is critical to use appropriate metrics that accurately reflect the performance of

the model when comparing various regression models. Three widely used metrics

are used in this thesis: MAE (Mean Absolute Error), RMSE (Root Mean Squared

Error), and R-squared. MAE, RMSE, and R-squared as predictor model evaluators

metrics provide a comprehensive evaluation of the model’s performance. MAE

and RMSE provide information about the magnitude of the errors in the predic-

tions, while R-squared (R2) provides information about how well the model fits

the data and the strength of the relationship between the variables.

The three tables presented the results of predicting soil properties using dif-

ferent models, with the assessment based on three evaluation metrics - Mean Ab-

solute Error (MAE), Root Mean Square Error (RMSE), and R-Squared (R2) along

with descriptive statistics, including minimum (Min), maximum (Max), mean,

standard deviation (SD), median, kurtosis, and skewness, for the predicted val-

ues. These statistics provide an overall view of the distribution of predicted val-

ues and can help to identify any potential outliers or biases in the models. Soil pH

was the best-predicted soil property. The MLR model had the highest RMSE value

of 0.27, indicating a larger deviation from the actual values. The ANN model had

the lowest MAE and RMSE values of 0.04 and 0.06 respectively, indicating the best

performance in predicting soil pH. The R2 values for all models ranged from 0.42

to 0.58, with ANN having the highest value of 0.58, indicating a good fit between

the predicted and actual values (Table. 3.4).

Table 3.4: The performance of different Soil pH prediction models using three
indicators of model evaluation with descriptive statistics

Models MAE RMSE R-squared Min Max Mean StDev. Median Kurtosis Skew
MLR 0.39 0.49 0.25 6.52 9.42 7.86 0.39 7.89 -0.09 1.11
RF 0.33 0.40 0.41 6.71 8.99 7.85 0.34 7.88 -0.21 1.20
RKLR 0.34 0.43 0.38 6.70 9.00 7.84 0.35 7.88 -0.28 1.11
RKRF 0.39 0.49 0.37 6.13 9.53 7.87 0.57 7.90 -0.10 0.28
GAM 0.37 0.44 0.38 6.35 9.32 7.88 0.49 7.85 0.20 0.25
ANN 0.23 0.27 0.67 6.58 9.00 7.89 0.40 7.88 -0.28 0.67

As seen in Table. 3.5, the ANN model had the lowest MAE and RMSE values
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of 0.09 and 0.14 respectively, indicating the best performance in predicting soil

EC. The R2 values for all models ranged from 0.24 to 0.62, with ANN having

the highest value of 0.62, indicating a good fit between the predicted and actual

values.

Table 3.5: The performance of different Soil EC prediction models using three
indicators of model evaluation with descriptive statistics

Models MAE RMSE R2 Min Max Mean StDev. Median Kurtosis Skew
MLR 0.17 0.25 0.24 0.02 0.75 0.36 0.14 0.35 -0.16 0.24
RF 0.13 0.21 0.42 0.13 0.80 0.37 0.12 0.36 0.39 0.57
RKLR 0.17 0.26 0.37 0.02 1.04 0.35 0.20 0.30 1.30 1.11
RKRF 0.14 0.22 0.39 0.13 0.81 0.37 0.12 0.36 0.53 0.62
GAM 0.16 0.23 0.36 0.02 1.04 0.35 0.20 0.30 1.24 1.10
ANN 0.09 0.14 0.62 0.11 0.83 0.35 0.15 0.32 0.92 0.96

For Soil OC prediction, the ANN model had the lowest MAE and RMSE values

of 0.07 and 0.10 respectively, indicating the best performance in predicting soil OC

as shown in table. 3.6. The R2 values for all models ranged from 0.23 to 0.65, with

ANN having the highest value of 0.65, indicating a good fit between the predicted

and actual values.

Table 3.6: The performance of different Soil OC prediction models using three
indicators of model evaluation with descriptive statistics

Models MAE RMSE R-squared Min Max Mean StDev. Median Kurtosis Skew
MLR 0.13 0.17 0.23 0.00 0.87 0.39 0.11 0.39 2.26 0.43
RF 0.11 0.14 0.39 0.20 0.79 0.39 0.08 0.40 3.34 1.00
RKLR 0.11 0.16 0.36 0.21 0.79 0.39 0.08 0.40 3.27 0.99
RKRF 0.12 0.16 0.36 0.04 1.02 0.40 0.16 0.39 1.89 0.94
GAM 0.12 0.17 0.35 0.10 0.98 0.38 0.14 0.37 1.75 0.79
ANN 0.07 0.10 0.65 0.12 0.84 0.40 0.11 0.39 2.56 0.85

By looking at the performance evaluation indicators, we can see that for all

three soil properties (Soil pH, Soil EC, and Soil OC), the Artificial Neural Net-

work (ANN) model performs the best overall, with the lowest MAE and RMSE

values, as well as the highest R-squared value. This indicates that the ANN model

is able to accurately predict all three soil properties with the least amount of error

and the highest amount of explained variation. Secondly, comparing the descrip-

tive statistics for the predicted values, we can see that for all three soil properties,

the ANN model generally has the smallest range of predicted values (from the

minimum to the maximum), the smallest standard deviation, and the smallest
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skewness and kurtosis values. This indicates that the ANN model is able to pro-

duce more consistent and less extreme predicted values compared to the other

models.

This indicates that the ANN model is better at predicting soil properties com-

pared to the other models tested. One of the reasons for the superior performance

of the ANN model could be its ability to handle complex and nonlinear relation-

ships between the soil properties and environmental variables. ANN models can

capture intricate patterns and relationships between variables that may be missed

by other models, making them highly flexible and effective in predicting soil prop-

erties.

Figure 3.4, 3.6 and 3.5 shows the scatterplot of predicted versus actual soil

parameter values with a regression line for different algorithms.

The bivariate density curve in green color contours is a smooth curve that

represents the joint distribution of the predicted and actual values. It can be use-

ful in identifying patterns and trends in the data and can give insights into the

relationship between the two variables. The univariate density curves with his-

tograms (blue color) on the margins represent the marginal distributions of the

predicted and actual values. The histograms show the frequency of values in

each bin, while the density curve shows the probability density function of the

values. These curves can provide additional insights into the distribution of the

data and can be useful in identifying outliers or skewness in the data. The regres-

sion line is drawn through the data points so that it lies as close as possible to all

the points, representing the best-fit line for the model. The trend indicates that the

predictor environmental covariates still provide information about the response.

R-square, even when small, can be significantly different from 0, indicating that

the regression model has statistically significant explanatory power.

It was observed that the models are able to capture the underlying trend in the

data, as evidenced by their relatively low MAE and RMSE values. This suggests

that the models are useful for predicting soil properties based on the independent

variables. Furthermore, the ANN model, which had the highest R2 value, also

had the lowest MAE and RMSE values, indicating that it is the most accurate
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model for predicting soil properties based on the independent variables.

In summary, predicting soil properties using environmental covariates is an

important and challenging task in soil science. While there are many challenges

associated with this process, it has the potential to provide valuable insights into

soil-landscape relationships and support informed land management decisions.
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Figure 3.1: Study Area showing soil sample points in North Gujarat Agro-climatic
area
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Figure 3.2: Predictive Soil modeling methodology flowchart
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Figure 3.3: The above image shows a 3-layer artificial neural network: One input
layer, two hidden layers, and one output layer.
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(a)MLR (b)RF

(c)RK - Linear regression (d)RK - RF

(e) GAN (f)ANN

Figure 3.4: Performance of Predicted Soil pH property for six different prediction
models
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(a)MLR (b)RF

(c)RK - Linear regression (d)RK - RF

(e) GAN (f)ANN

Figure 3.5: Performance of Predicted Soil EC property for six different prediction
models
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(a)MLR (b)RF

(c)RK - Linear regression (d)RK - RF

(e) GAN (f)ANN

Figure 3.6: Performance of Predicted Soil OC property for six different prediction
models
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CHAPTER 4

Desertification Vulnerability Assessment

The objective of this study was to characterize an area vulnerable to desertification

and its severity level. In order to slow down or stop the progress of desertification.

The flaw of any system can be assessed by considering the basic concept of vulner-

ability. In the context of the present study, the vulnerability assessment of deser-

tification was conducted using remote sensing and geographic information sys-

tem (GIS) techniques to map out sensitive areas. Areas, where interventions are

required, will also be identified using a vulnerability assessment. This might in-

volve initiatives like water harvesting, sustainable land management techniques,

or reforestation.

Multidisciplinary approaches have also been made in an effort to integrate

various data sources and methodologies in order to study the implications of land

degradation in semi-arid India due to the complex and multilayered relationship

between land degradation and socioeconomic development [125]. An integrated

approach can be used to portray the progress of desertification in a thorough and

simple manner by taking into account quantitative and qualitative methods and

by employing certain indicators[153]. Rashid et al. [130] applied an indicator

technique to comprehend regional land degradation. Slope, land use, and veg-

etation cover were employed as indicators in this study. However, it was noted

that at time periods longer than a year, signs of land degradation are dynamic.

Longer-term records are required to be investigated in order to provide a better

assessment. In order to assess an area vulnerable to desertification, a number of el-

ements, including climate, vegetation, soil, and land use, must be examined. Nat-

ural and anthropogenic factors accelerate the Land degradation process, which
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can be assessed using a multidisciplinary approach based on environmental and

human indices.

Many different mathematical models have been developed and used in dif-

ferent areas to identify areas vulnerable to desertification. [16, 139, 41, 6, 27]

The conventional methods to identify vulnerability were to classify basic param-

eters for land degradation and then define classes with a certain range of values

and assign particular classes. The Mediterranean Desertification and Land Use

(MEDALUS) approach is a methodology used to assess the risk of land degra-

dation in Mediterranean regions. It involves the analysis of various environ-

mental and socio-economic factors to develop an environmental sensitive index

along with the social and economic index of settlements. All the factors were in-

dexed statistically and using expert knowledge in different severity classes. The

MEDALUS approach has been used in various regions, including the Mediter-

ranean, to assess the risk of land degradation and desertification. It is an effective

methodology for identifying the areas that are most vulnerable to land degra-

dation and can be used to develop targeted interventions to mitigate the risk of

degradation. [85, 6, 22, 91, 126, 160]

Another risk assessment model globally used is the fuzzy logic model(FL) in-

tegrated within geospatial environment [143, 41, 13]. In FL model, fuzzy mem-

bership function with statistical mean and standard deviation are used to identify

risk areas. Environmental and socio-economic data values were found, which

represent not a particular class of value but a transitional zone. These zones are

most important in terms of degradation. They have the lowest probability of be-

ing in a certain consistent class and the highest probability of being in the most

vulnerable classes[198, 38]. These transitional zones are critical in assessing the

risk of land degradation because they are the areas where preventative measures

can be most effective in mitigating the risk of degradation. By identifying the

transitional zones, FL models can provide a more accurate assessment of the risk

of land degradation than traditional classification methods. By focusing on the

transitional zones, the models can identify areas that may not be at immediate

risk of degradation but are susceptible to degradation in the future. This allows
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policymakers and land managers to implement targeted interventions to prevent

future degradation and preserve the health of the ecosystem.

The study’s outcome would help identify the vulnerable areas to desertifi-

cation/land degradation and the severity of degradation in natural and socio-

economic parameters. Additionally, remote sensing techniques and GIS to evalu-

ate the degree of risk would help the expert in very efficient planning of resource

allocation and decision-making to mitigate desertification and layout proper man-

agement plans. It is possible to implement conservation and management plans

to lower this risk and save the land and the people who depend on it, once the re-

gions at risk of desertification have been identified. The approaches could consist

of:

• The preservation and restoration of vital natural resources like vegetation,

soil, and water;

• The adoption of sustainable land use and land cover change management

practices;

• The promotion of alternate livelihood options and income-generating ven-

tures that ease the strain on natural resources;

• The promotion of education and training on desertification and effective

conservation practices.

4.1 Study Area

Panchmahal is located in the Eastern Part of Gujarat. It lies between the parallels

of latitude 22.26◦ and 23.11◦ and the meridians of longitude 73.34◦ and 73.95◦.

Godhra is the district headquarter. The district is located on eastern end of the

state. The length from north to south of the district is about 95 km and from east

to west about 67 km. It is bounded on the north by the Mahisagar district, on

the to the north-east and east by Dahod district. Chhota Udaipur district to the

southeast and on the west by Kheda district and Vadodara district to the south-

west. Agriculture is main source of income of this district. Panchmahal is rich
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Figure 4.1: Panchmahal District of Gujarat

in forestry resources and quartz and manganese are the two largest mineral re-

sources in the district.[31]

4.2 Datasets

Natural parameters like climate, soil, vegetation, terrain, land cover, etc. and an-

thropogenic parameters like population, land use, economy, amenities, etc. di-

rectly or indirectly affect land degradation. These parameters are considered as

inputs for vulnerability assessment. NDVI is used for Vegetation Index (VI). Satel-

lite images of three-season (Kharif, Rabi and Zaid) were used to calculate NDVI. Soil

texture, soil erosion, soil pH, soil depth and drainage maps were used as soil in-

put data extracted from soil map prepared by National Bureau of Soil Survey and

Land Use Planning (NBSS-LUP)[116]. Consultative Group on International Agri-

cultural Research - Consortium for Spatial Information (CGIAR-CSI) global arid-

ity index database of aridity index was used for climate index[167]. This aridity

index modeled using the data available from the WorldClim Global Climate Data

from 1950-2000 as input parameters[73]. Land use land cover (LULC) maps used
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Table 4.1: Dataset Specifications

Index Resolution Layer
format

Source

Climate 865 mtr Raster Global Aridity Index[167]
Soil 1:250000 Vector NBSS-LUP[116]
Land Utilisation 56 mtr Raster Bhuvan-ISRO
Elevation&Slope 30 mtr Raster Bhuvan-ISRO
Vegetation 30 mtr Raster Landsat Data
Socio-Economic Village level Vector 2011 Census of India[31]

for land utilization index, and used a digital elevation model for elevation and

slope index. India Census 2011 [31] data were used to generate a socio-economic

index for anthropogenic input for desertification risk analysis. Detail dataset spec-

ification, including its data type, source, and spatial resolution given in table 4.1.

4.3 Methodology

Land degradation refers to the gradual deterioration of the quality of the land

and its ability to support various ecological and economic functions. It is a com-

plex phenomenon that involves a range of interconnected processes that can lead

to a decline in land productivity and biodiversity. It is then essential to gener-

ate different indices, which can be utilized to recognize the weak areas prone to

desertification. Climate, vegetation, land use and soil play a huge part in the de-

sertification of any area. Subsequently, these indices are used, Climate index (CI),

Soil index (SI), Elevation index (EI), Slope index (SlopI), Vegetation index (VI), and

land utilization index (LUI). These information sources have been taken as spatial

layers and have coordinated in a GIS environment to give naturally weak areas

to desertification. Human intervention prompts critical changes in the environ-

ment, making socioeconomic factors another significant contribution to assessing

vulnerability to desertification. The incorporation of the Cumulative Amenities

index (CAI) and Economic Development Index (EDI) into a Socio-economic in-

dex (SEI) is a useful approach to analyzing the social and economic factors that

contribute to land degradation. In this thesis, two unique methodologies were
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Table 4.2: Vulnerability index definition in MEDALUS model

Category Severity Level

1 Very Low
2 Low
3 Moderate
4 High

taken for calculating vulnerability. MEDALUS model is applied as one technique,

and the second methodology is fuzzy logic for quantifying the information and

finding the risk areas for desertification.

4.3.1 Medalus Model

The procedure used depends on the basic model of MEDALUS, created in a large

project set up by the European Commission.[85] The MEDALUS is one of the most

generally utilized models in observing desertification affectability. The MEDALUS

model’s ability to adapt the amount of variables used to determine the vulnera-

bility to desertification is one of its primary advantages. For instance, in a study

in Serbia, three criteria were employed for the soil quality index, three for the

climatic quality index, two for the management quality index, and three for the

vegetation quality index[80]. While in another study, three criteria were utilized

for the climatic quality index, two for the management quality index, and six were

used for the soil quality index[43]. Because users can add, remove, and modify

the sub-indicators as needed, the methodology is also flexible.

All the variables as described in the previous section were indexed into four

categories from 1 to 4, where 1 represents the low vulnerability and 4 represents

the high vulnerability as shown in table 4.2 The geometric mean of all the indices

was calculated to find out the final desertification vulnerability index. Eq. 4.1 is

represnting the desertification vulnerability index(DVI).

DVI = (CI ∗ SI ∗ EI ∗ SlpI ∗ VI ∗ LUI ∗ CAI ∗ EDI)
1
8 (4.1)

where, CI = Climate Index, SI = Soil Index, EI = Elevation Index, SlpI = Slope
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Index, VI = Vegetation Index, LUI = Land Utilization Index, CAI = Cumulative

Amenities Index, EDI = Economic Developement Index. All the indices used to

calculate the final DVI are discussed in detail in the following sections.

Climate Index (CI)

The values of aridity parameters are used to calculate the climate Index. Climate

classes based on aridity index values quantify in four index values, as given in

table 4.3.

Table 4.3: Quantization of Climate Index

Climate classification Aridity Value Index Value

Arid < 0.2 4
Semi-arid 0.2-0.5 3

Dry sub-humid 0.5-0.65 2
Humid > 0.65 1

Soil Index (SI)

Soil is the main factor for land degradation study. Soil index was coordinated

from a few soil parameters that consolidate soil erosion, soil drainage, soil depth,

soil pH, and soil texture. All parameters were categorized as shown in table 4.4

and the geometric mean was determined for soil index. This soil index was then

quantized in four severity classes using statistical mean and standard deviation,

as shown in table 4.5.

Soil Index = (Texture ∗ Depth ∗ pH ∗ Drainage ∗ Erosion)
1
5 (4.2)

Elevation Index (EI) & Slope Index (SlopI)

Elevation and slope are generally identified with land degradation other than in

any remarkable case. Elevation values are not normally distributed. Instead of

using mean and standard deviation for categories, median and quantile values
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Table 4.4: Quantization of Soil parameter

Soil Properties Class Categories

Soil Texture

Clayey 4
Very Fine, Fine 3
Loamy, Fine Loamy, Coarse Loamy 2
Loamy Skeletal, Clayey Skeletal 1

Soil Depth

Ext. Shallow (<10 cm) 4
Shallow (10-75 cm) 3
Mod. Deep (75-100 cm) 2
Deep, Very Deep (>100 cm) 1

Soil pH

Strongly alkaline (>9.5) 4
Mod. alkaline (8.5-9.5) 3
Slightly alkaline (7.5-8.5) 2
Neutral (6.5-7.5) 1

Soil Drainage

Very poor, Imperfect 4
Somewhat excessive, Excessive 3
Moderately well 2
Well 1

Soil Erosion

Very severe 4
Severe 3
Slight Severe 2
Moderate 1

Table 4.5: Quantization of Soil Index

Rule SI Value Index Value

< (µ − σ) < 1.48 1
(µ − σ)− µ 1.48 - 1.79 2
µ − (µ + σ) 1.79 -2.10 3
> (µ + σ) > 2.10 4

83



were utilized for Indexing. Accordingly, the slope angle is significant for exami-

nation. The more extreme the inclination angle, more prominent the erosion, thus

speeding water-stream and wind streams in a descending way increases with the

slope. The slope index in degrees was listed in four classes, as appeared in table

4.6.

Table 4.6: Quantization of Slope Index

Slope (in degrees) Index Value

Mod. Steep sloping (15-30) 4
Moderately sloping (8-15) 3
Gently Sloping (3-8) 2
Very gently or nearby level (0-3) 1

Vegetation Index (VI)

The fundamental factor concerning the security of soil richness and its profitabil-

ity is vegetation. Destruction of vegetation, oftentimes, by human activities stim-

ulates soil degradation to a tremendous degree, accordingly provoking deserti-

fication. Higher photosynthetic action will bring about lower reflectance in the

red frequency channel and higher reflectance in the close-to-infrared frequency

channel in satellite remote sensing data. Green plants absorb more red light and

reflect more NIR light, while unhealthy or water-stressed vegetation reflects more

red light and absorbs more NIR light. Therefore, NDVI is used as an indicator of

vegetation health and can be used to identify areas of healthy or stressed vegeta-

tion. A high NDVI value indicates healthy vegetation, while a low NDVI value

indicates stressed vegetation. In other words, the NDVI signature is significantly

identified concerning the green plants, and it gets inverse if there is an event of

unhealthy or water-stressed vegetation. To get a normal vegetation life, three

years mean NDVI was thought about. Using this primary mechanism probability

distribution of NDVI values vulnerable to desertification was indexed as table 4.7.

Socio-Econimic Index(SEI)

Cumulative Amenities Index(CAI)
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Table 4.7: Quantization of Vegetation Index

NDVI Value Index Value

< 0 4
0 - 0.17 3
0.17 0.38 2
> 0.38 1

The other important factor for assessing any degradation in nature is the progress

of society. as society grows, there may be increased awareness and concern about

environmental issues, but it is not always the case that this leads to significant

investigations and a reduction in harm to the environment. Amenities available

at the village level, such as medical, education, communication, etc. used to cal-

culate the village-level amenities index based on the cumulative weighted index

model(eq.4.3). The villages have more amenities; the harm will be less. Equation

5 shows the cumulative amenities index for a particular village.

Ia =
(ΣAiWi)

ΣWi
(4.3)

where,

i = 1 to n

Ia = index for a particular settlement vis-à-vis class of amenity

n = Number of amenities in a category (e.g. 2 or 4 nos.)

Ai = 0 or 1 (Not available, Available)

Wi = Weight of the amenity within category/class facility and it

is defined as,

Wi =
N − Ki

Ki
∗ 100 (4.4)

N = Total no. of Settlements

Ki = No. of Settlements having amenity i Amenities index

Cumulative amenities index for a particular village was calculated using

CAI = ΣIa (4.5)
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where

a = 1 to m; m is the number of amenity categories

Econimic Developement Index(EDI)

The economic development of a village is derived based on its working and

non-working population as given in Eq.4.6. The cumulative amenities index and

economic development index was assembled into three classes subject to its mean

and standard deviation.

EDI =
√

D ∗ W(1 − A) (4.6)

where,

D = Population density of the village (Total population/village

area)

W = Employed population / Total population

A = Unskilled workers proportion (i.e. (agricultural labors +

marginal workers) / Total population)

Land Utilization Index(LUI)

Land use/land cover data were procured from ISRO [118] which was prepared

using knowledge-based supervised classification and probability classifier calcu-

lation. The information demonstrated that there were 16 diverse land use and

land cover in Gujarat state. All the classes have been allocated a numerical value

from 1 to 4 according to their weakness towards land degradation to the expert’s

decision. Table 4.8 displays the effect of vulnerability for different land utilization

classes. Same LUI is used in both models.

4.3.2 Fuzzy logic approach

Data and decisions are firmly connected, the raw data was associated by fuzzy

logic to the quantitative decision rules. Quantitative evaluation using fuzzy logic

theory was investigated in order to consolidate the decision rules with both quan-

titative and subjective manners for vulnerability assessment. In the fuzzy logic
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Table 4.8: Land Utilization Index

LULC Class* Index Value

Scrub/Degraded Forest

4
Littoral swamp
Other wasteland
Gullied
Scrubland
Current fallow 3
Kharif only

2
Rabi only
Zaid only
Double / triple
Plantation/orchard
Evergreen forest

1
Deciduous forest
Water bodies

NABuild up
Rann

*Bhuvan-ISRO LULC

framework, The distribution of data of a single parameter was assumed to be a

normal distribution with mean µ and standard deviation σ. Normal probability

density function(pdf) was used to obtain the membership of individual variables

to be in a particular class, following the statistical formula,

f (x, µ, σ) =
1

σ
√

2µ
∗ e

−(x−µ)2

2σ2 (4.7)

where,

x = an individual from a class of picked boundaries,

µ = class mean

σ = the standard deviation of the class.

The data was partitioned in three classes as given in table 4.9. The fuzzy areas

between these classes were identified as vulnerable areas and given the severity

index as very low, low, moderate and high as indicated for input parameters.

Besides, recognizable proof of weak regions is extremely straightforward from

this model. The qualities lying in the middle of (µ + σ) of the past class and (µ −
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Table 4.9: Classes definition in Fuzzy logic

Class 1 X ≤ µ − σ

Class 2 (µ − σ) < X ≤ (µ + σ)
Class 3 X > (µ + σ)

Table 4.10: Vulnerability index definition in Fuzzy logic

Value VI, EDI, CAI, CI, SI, EI, SlopI

X ≤ (µ1 − σ1) High Very Low
(µ1 + σ1) ≤ X ≤ (µ2 − σ2) Moderate Low
(µ2 + σ2) ≤ X ≤ (µ3 − σ3) Low Moderate

X ≥ (µ3 − σ3) Very Low High
Other NA NA

σ) of the following class were considered vulnerable and recognized as the danger

territory as depicted in the table. Areas apart from these were not considered as

vulnerable and given NA as an index(table 4.10).

As an example, the vegetation index is taken in Fig. 4.2. Here three bell-

shaped pdf plots represent three classes based on NDVI data mean and standard

deviation and the fuzzy area, shown in red, yellow, green and blue color rectangle,

between µ + σ of the previous class and µ − σ of the following class is called the

transition zone and considered as a vulnerable class and given its severity index

from high to very low.

[h]DVI = MAX(CI, SI, EI, SlpI, VI, LUI, CAI, EDI) (4.8)

Composition of all indices was generated and the maximum value is taken for

DVI for the fuzzy logic algorithm as shown in Eq. (4.8).

4.4 Results & Discussion

4.4.1 Climate Index (CI)

The climate of this area is portrayed by a blistering summer and dryness in the

non-rainy seasons. Humidity of Panchmahal district is higher in July, August and
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Figure 4.2: Severity index for vegetation using fuzzy logic

September months. The district has arid and semi-arid climate having aridity

index from 0.2 to 0.6. Fig. 4.3(a) shows the climate index for Panchmahal district

of Gujarat using Medalus model. Panchmahal have nearly two equal classes as

moderate and low sevear climate index. As Panchmahal is mostly covered with

forest area and it has good amount of rainfall around the year gives low aridity

index area more than 50% using fuzzy logic(Fig. 4.3(b)).

4.4.2 Soil Index (SI)

The study area has great assortments of soils. The soil varies in its fruitfulness

here and there.

The western zones have richness in soils, while the eastern territories have

shallow sandy soils. In the northwest, the soil is alluvial; south of this there is

a belt of dull black soil. Toward the northeast, a rich medium-dark soil called

Besar is helpful for wheat and gram. Southern has nearly all through goradu soil

which is more fruitful. In the southern stretches of rich dark soil with all through

goradu soil which is more fruitful in the centre region. 60% of the district area falls

under a very low severity zone using the Medalus approach(Fig. 4.4(a)). While

in fuzzy logic 15% area for both low and very low severity zone(Fig. 4.4(b)). As

soil is very rich in Panchmahal district there is no area in high or moderate one
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(a) Medalus approach (b) Fuzzy Logic approach

Figure 4.3: Aridity Index Map

for desertification vulnerability.

4.4.3 Elevation Index(EI) Slope Index

Panchmahal has little scattered sedimentary and volcanic dissected hills. The

southern and eastern part is covered with hills. Elevation gradually decreases

from east to west. Pavagadh hill rises suddenly to a stature of more than 800m

and with high slope in the southern part of the region. The western part comprises

a plain region. The central part of the district is covered by slopes with forest and

plain cultivated lands in villages situated in the stream valley. The western piece

of the locale is generally flat. Fig. 4.5 and Fig. 4.6 shows the elevation index and

slope index map for the Panchmahal region.
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(a) Medalus approach (b) Fuzzy Logic approach

Figure 4.4: Soil Index Map

4.4.4 Vegetation Index (VI)

Living of millions of individuals in India relies upon farming which is overall

affected by locally accessible natural resources. In Gujarat as in other states of

India, farming turns out to be the primary wellspring of means for most individ-

uals. NDVI’s high values represent high vegetation and it contributes less to the

land degradation process while the sparse vegetation has a high commitment to

the land degradation and henceforth fell into the low and moderate zone. The for-

est cover of the Panchmahal comprises around 23% of an absolute topographical

regions of the district. 86.49% of the region is under a low weak zone for the area.

Fig. 4.7(a) shows the vegetation index map of Panchmahal district for medalus

model.
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(a) Medalus approach (b) Fuzzy Logic approach

Figure 4.5: Elevation Index Map

4.4.5 Socio-Economic Index (SEI)

Amenities like education, medical, communication facility, and transport network

facilities are considered administrative necessities. Moreover, good amenities are

a prerequisite for the social and economic development of any district. Facilities

like education and healthcare were used to calculate the amenities index. Working

and non-working populations of all the villages were considered for economic

development index calculation.

The area of the Panchmahal district is mostly under low and very low vulner-

ability classes for the amenities index. 36.06% of area is under the moderate vul-

nerable zone for the district and less than 1% area is under high class for amenities

index. Fig. 4.8 shows the amenities index map of Panchmahal district. Fig. 4.9

shows economic development index map in which more than 10% of the area is

under the high-risk zone and 44.26% area under moderate class.
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(a) Medalus approach (b) Fuzzy Logic approach

Figure 4.6: Slope Index Map

4.4.6 Land Utilization Index (LUI)

The area of the Panchmahal district is mostly covered by agricultural land and

gives 67.52% of the total area of a district under a low vulnerability class. 21.28%

of the area is under high vulnerable zone for the district. Fig. 4.10 shows the land

utilization index map of Panchmahal district.

4.4.7 Desertification Vulnerability Index (DVI)

Environmental sensitive index (CI, SI, EI, VI, SloI, EI) and socio-economic index

(CAI, EDI) were represented spatially in GIS environment to know the areas at

risk of desertification with their severity.

Table. 4.11 represents the percentage area under different severity conditions

for desertification vulnerability using two approaches: Medalus Approach and

Fuzzy Logic Approach. Urban areas, water bodies, and rivers were masked in

DVI map and marked as NA.
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(a) Medalus approach (b) Fuzzy Logic approach

Figure 4.7: Vegetation Index Map

Table 4.11: Percentage area under different severity condition for desertification
vulnerability

Medalus Approach Fuzzy logic approach

NA 9.67% 9.77%
Very Low 10.72% 0.25%
Low 35.53% 24.76%
Moderate 30.92% 44.29%
High 13.16% 20.93%
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(a)Medalus approach (b)Fuzzy Logic approach

Figure 4.8: Cumulative Amenities Index Map

(a) Medalus approach (b) Fuzzy Logic approach

Figure 4.9: Economic Development Index Map
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Figure 4.10: Land Utilization Index Map
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(a) Medalus approach (b) Fuzzy Logic approach

Figure 4.11: Desertification Vulnerability Index Map
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The area of the Panchmahal district is mostly under a low severity level with

around 35% of the total area. 13.16% of the area under high risk zone for desertifi-

cation. 30.92% and 10.72% of area under moderate and very low-risk zone for de-

sertification using Medalus model. In the fuzzy logic approach, mostly Panchma-

hal district is under moderate vulnerability with 44.29% area since lower altitude

area is primarily out of risk comparatively having low vulnerability with nearly

25% area. and high alarming areas are in patches scattered with 21% of the total

area as seen visible in Fig. 4.11 which shows the DVI map of the Panchmahal dis-

trict for two different methods. Here using both methods the area is different for

the high-risk zone. Still, the geographic location of these areas is the same, which

indicates that this severity condition is easier to predict or map accurately. How-

ever, the lower severity conditions have more significant differences between the

two approaches.

The results show that the Medalus approach tends to identify larger areas as

being vulnerable to desertification in lower severity conditions (e.g., Very Low

and Low). This may be due to the algorithm used to calculate the DVI, which

may be more sensitive to socioeconomic indicators that are more prevalent in

these areas. The results of the Fuzzy Logic approach for different severity con-

ditions show some variation in the percentage area for each vulnerability class.

The results show that the Fuzzy Logic approach tends to identify larger areas as

being vulnerable to desertification in higher severity conditions (e.g., Moderate

and High). This may be due to the use of fuzzy logic rules, which can handle

imprecise or uncertain data and may be more sensitive to certain biophysical in-

dicators like elevation and climate that are more prevalent in these areas.

Overall, both approaches have their strengths and weaknesses and can be use-

ful in assessing desertification vulnerability.

The Medalus approach relies on the knowledge and expertise of local stake-

holders, which can provide valuable insights into the specific conditions and fac-

tors contributing to desertification vulnerability. However, it can also be subjec-

tive and dependent on the quality and reliability of the expert input.

The Fuzzy Logic approach, on the other hand, relies on quantitative data anal-
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ysis, which can provide a more objective and reproducible assessment of deserti-

fication vulnerability. However, it can be limited by the availability and quality of

the data, and may not capture the full complexity of the system being studied.

The choice of approach may depend on the specific needs of the study and

the level of detail required. It is also important to note that the accuracy and

precision of the results may vary depending on the quality and availability of

data, the assumptions and parameters used in the models, and the methods used

to generate the maps.
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CHAPTER 5

Desertification hot-spot using Aridity Index

Desertification is a phenomenon that occurs when an area that was once covered

with productive vegetation turns into degraded land due to various natural and

human reasons. Reduced precipitation and soil moisture, which can result in veg-

etation loss, soil degradation, and a drop in agricultural output, are the main

causes of desertification. The risk of desertification in a particular area can be

determined using the aridity index. Due to increased water stress and decreased

plant cover, areas with a high aridity index are more likely to develop desertifi-

cation. Desertification hot spots can be identified by regions with aridity indexes

indicating arid, semi-arid, or hyper-arid conditions. The aridity index can also

be used to pinpoint places that are already experiencing desertification as well as

those that could be at risk in the future. These regions often experience significant

land degradation and erosion, leading to the expansion of desertification[39, 150].

The aridity index is the numerical representation of the dryness of the climate

for a particular location. The aridity index (AI) is a useful parameter to study

desertification conditions and its pattern. The AI formulation has been adopted

by UNEP, FAO, and UNCCD for explaining different situations. Eq.5.1 shows the

definition of Aridity index[16].

AridityIndex(AI) =
Precipitation(P)

Potentialevapotranspiration(PET)
(5.1)

Potential evapotranspiration is defined as the idealized quantity of water evap-

orated and transpired by vegetation, soil and ecosystem, per-unit area, per unit

time from an idealized, sufficient water surface under existing atmospheric con-
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Table 5.1: The aridity zones based on Aridity index values

Zone Aridity Index

Hyperarid: <0.05 (Desert)
Arid: 0.05 to 0.20
Semi-arid: 0.20 to 0.5
Dry sub-humid: 0.5 to 0.65
Humid: >1

ditions. Precipitation defines the water vapor from the atmosphere which falls on

the earth due to gravity. As per this index, different aridity zones are classified

as given in Table 5.1[16]. Areas, other than polar and sub-polar regions, in which

the ratio of annual precipitation to potential evapotranspiration falls within the

range from 0.05 to 0.65 is called "arid, semi-arid, and dry sub-humid areas". Fig.

5.1 depicts the climatic zones delineated by Raju et al.[129] with the district area

as a unit of study.

Figure 5.1: District level climate classification of aridity zones of India.[129]
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Figure 5.2: Meteorological observatories in Gujarat

5.1 Datasets

Weather data of Gujarat from meteorology observations for more than 18 loca-

tions during 1995-2015 has been used in this study. Fig.5.2 shows the locations

of the meteorology stations in Gujarat. Meteorological parameters like minimum

temperature, maximum temperature, rainfall, relative humidity, wind speed and

wind direction and bright sunshine hour parameters were collected along with

the geographic location of each station. In addition, the satellite-derived product

like MODIS-Terra Normalized Difference Vegetation Index (NDVI) product for

the past 20-year period of rabi season was used for the analysis.
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5.2 Methodology

Data for the weather parameters were collected on daily basis. Some ambigu-

ity and randomness were corrected in preprocessing and cleaning of data. Than

daily data were transformed to weekly, monthly and yearly data to calculate the

AI. Potential Evapotranspiration was calculated for all stations of Gujarat using

FAO Penman-Monteith equation explained in eq. 5.3.[8] PET and rainfall were

used to calculate AI for different locations. Spatial interpolation was performed

to get continuous map from point data and an annual AI map for the whole state

of Gujarat was generated using these values. Spatial interpolation is a technique

used in GIS and remote sensing to estimate values of a variable (such as tem-

perature, precipitation, or elevation) at locations where no direct measurements

are available. This is done by using known values of the variable at nearby lo-

cations to estimate values at the unknown locations. kriging is a geostatistical

interpolation method that uses a linear combination of nearby known data points

to estimate the value of a variable at an unknown location. The general formula

for the kriging interpolator is:

Z(0) =
N

∑
i=1

λiZ(i) (5.2)

where,

Z(si)= the measured value at the ith location, λi = an unknown weight for the

measured value at the ith location, s0 = the prediction location, N = the number of

measured values, Z(s0) = the predicted value at s0.

To develop an aridity index map for the Gujarat state from in-situ weather

data, first ET0 was calculated on yearly mean data for the stations in which re-

quired meteorological parameters were available. The FAO Penman-Monteith

method was developed by adopting the Penman-Monteith combination method

for reference evapotranspiration. The method gives more significant values with

actual crop water use data worldwide. The FAO Penman-Monteith [8] method to

estimate ET0 is expressed as:
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ET0 =
0.408∆( Rn − G) + γ 900

T+273 u2( es − ea)

∆ + γ(1 + 0.34 u2)
(5.3)

where,

ET0 = reference evapotranspiration [mm/day],

Rn = net radiation at the crop surface [MJ/ m2 day],

G = soil heat flux density [MJ/m2 day],

T = mean daily air temperature at 2 m height [◦C],

u2 = wind speed at 2 m height [m/s],

es = saturation vapour pressure [kPa],

ea = actual vapour pressure [kPa],

D = slope vapour pressure curve [kPa/ ◦C],

g = psychrometric constant [kPa/ ◦C].

Utilizing rainfall data collected from observatories, AI was calculated for dif-

ferent stations of Gujarat for available stations. From point data, kriging inter-

polation was performed to get the AI map of Gujarat. Using this method the AI

maps for the Gujarat region over the 20 years are developed. The calculated AI

result was compared with the satellite-derived product NDVI. The Modis-Terra

NDVI product for the same year’s as of AI was taken and compared. The NDVI

for the Gujarat region is processed and formatted to match at the same resolution

as that of the AI map. The AI results are checked and correlated with the compari-

son for different times under drought and normal years according to meteorology

throughout Gujarat State.

5.3 Results & Discussion

The state of Gujarat in India is characterized by different climatic zones based

on aridity, which divided the region into three zones: arid, semi-arid, and sub-

humid zones as explained in Table 5.1. Fig. 5.3(a)-(d) shows the calculated aver-

age potential evapo-transpiration, rainfall and aridity index map of Gujarat. The
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(a) (b)

(c) (d)

Figure 5.3: Average (a) PET, (b) rainfall and (c) aridity index map of Gujarat (d)
CGIAR-CSI global aridity index

AI map represents the climatic zones of Gujarat. Aridity zones were classified as

explained. Fig. 5.3(d) shows the aridity index map of Gujarat using the CGIAR-

CSI Global Aridity Index database. The Global-Aridity is modeled using the data

available from the WorldClim Global Climate Data as input parameters, for 1950-

2000.[41] Visual comparison of the developed Aridity Index (AI) map with the

globally available CGIAR-CSI AI map revealed small discontinuous patches of

arid zones in Bharuch, Amreli and Ahmedabad districts although these districts

are located in a semi-arid zone. These areas can be considered as desertification-

prone zones. Similar pockets were also noted in north Gujarat and some parts

of Saurashtra despite of them being located in semi-arid zone. Both the aridity

index maps as shown in the Fig. 5.3(c) and 5.3(d) are estimated by the Penman-

Monteith method but the developed map Fig. 5.3(c) has used real observatory

data over eighteen meteorological observatories of Gujarat as shown in Fig.5.2.
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(a) (b)

Figure 5.4: Comparison of (a) normalized difference vegetation in-
dex(NDVI)during rabi season of 2008 and (b) aridity index map of 2008

(a) (b)

Figure 5.5: Comparison of (a) normalized difference vegetation index(NDVI) dur-
ing rabi season of 2012 and (b) aridity index map of 2012

(a) (b)

Figure 5.6: Comparison of Histogram of rabi NDVI and AI map for year (a) 2008
and (b) 2012.
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Figure 5.7: Relation between NDVI and AI value of random points for the year
2008 and 2012

As there is a very strong relationship between NDVI and rainfall. [54] So An-

nual AI and NDVI maps were used for comparing the trend under normal (2008)

and drought (2012) situation as depicted in Fig. 5.4 and Fig. 5.5, respectively. In

Fig. 5.4 NDVI results are compared with rabi data of normal rainfall year (2008).

Comparing the AI map with NDVI map using pixel-based correlation gives a cor-

relation coefficient value from 0.48 to 0.7. The results of the NDVI are compared

with AI map for different years based on histogram method as shown in Fig. 5.6.

The mean AI in the year 2008 is 0.73 and NDVI is 0.33 and in the year 2012 mean

AI is 0.49 and NDVI is 0.31. The NDVI value decreases as the AI value decreases.

To get 1:1 relation between NDVI and AI value of random points (sixty) were se-

lected from the 2008 and2012 year data(Fig. 5.7). Positive correlation of NDVI

with AI, was observed because as the AI values increased the NDVI is also in-

creases.
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CHAPTER 6

Conclusion

The study conducted an analysis of desertification in two different areas, Panchma-

hal and Bhavnagar in Gujarat, India. In this study, a three-stage algorithm was

proposed to calculate the severity and status of desertification. In the first stage,

three different segmentation methods (Region Growing, Mean-shift, and SLIC)

were used for the classification of Level 1 land cover. The accuracy comparison

showed that SLIC was the most accurate method for this classification. Three dif-

ferent algorithms were then used for the classification: Support Vector Machine

(SVM), Patch-based Convolutional Neural Network (CNN), and SLIC combined

with Random Forest (RF). The results showed that all three algorithms achieved

relatively high accuracy scores, with the SLIC+RF approach performing the best

at 80%. The precision and recall scores for all three models were also quite high,

with the SLIC+RF approach outperforming the other two in terms of precision

and recall. Object-based classification was used for level 1 land cover classifica-

tion, and the results showed that the overall accuracy for both areas was good,

with Bhavnagar having a slightly higher accuracy (85%) than Panchmahal (80%).

The results suggested that the complexity of the terrain and the heterogeneity of

the land cover significantly affect the accuracy of the object-based classification.

The study identified the desertification process in level 2 classification using RF

and SVM algorithms. The models used the vegetation index to identify the ex-

tent of vegetation cover in the classification of forest vegetation degradation, and

soil salinity index to classify the soil salinity. The study also compared the visual

results of SLIC with RF classified results with the ground truth (GT) class map

for level 1 land cover classification. The comparison showed that object-based
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classification resulted in more cohesive and smooth polygons representing differ-

ent land cover classes, as compared to pixel-based classification. The study con-

cluded that the SLIC+RF approach is a promising method for level 1 classification

and Random forest for level 2, particularly in terms of its ability to achieve high

precision and recall scores. Overall, the study provided valuable insights into the

severity of desertification in the study areas and demonstrated the effectiveness

of the proposed three-stage algorithm in classifying land cover and assessing the

desertification status. Covariates such as soil texture, climate-related variables,

vegetation-related variables, and relief (topography) can be used to represent soil

in predictive soil mapping (DSM) activities. Covariates selection involves reduc-

ing the input covariates by utilizing only relevant data and disposing of non-

relevant data. Recursive feature elimination (RFE) is an algorithm that can be

used to determine the importance of each covariate in the model and eliminate

the redundant ones. Overall, The study discusses the use of machine learning in

predicting soil properties by comparing different regression models in predicting

soil pH, soil OC and soil EC, with the ANN model having the best performance in

all cases. SCORPAN approach based soil forming factors were used as covariates.

Covariates such as soil texture, climate-related variables, vegetation-related vari-

ables, and relief (topography) can be used to represent soil in predictive soil map-

ping (DSM) activities. RFE with linear regression was used to identify the most

relevant covariates or features that are most predictive of the target soil propeties.

By removing non-relevant features, the model’s complexity is reduced, and it be-

comes easier to interpret as proper covariates selection and preparation are essen-

tial for accurate and efficient. Additionally, reducing the number of features can

help reduce the risk of overfitting and improve the model’s generalization per-

formance on new data. The results suggest that machine learning models can be

effective in predicting soil properties. However, it is important to use appropri-

ate evaluation metrics to accurately compare the performance of different models.

The use of descriptive statistics such as minimum, maximum, mean, standard de-

viation, median, kurtosis, and skewness can also provide an overall view of the

distribution of predicted values and help to identify potential outliers or biases in
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the models. The study analyzed the desertification vulnerability of the Panchma-

hal district of Gujarat using various environmental and socio-economic indices.

The study found that the district has a semi-arid climate with an aridity index

ranging from 0.2 to 0.6. The soil of the area varies in their fruitfulness, and the

western zones have richness in soils, while the eastern territories have shallow

sandy soils. The district has little scattered sedimentary and volcanic dissected

hills, and the elevation gradually diminishes from east to west. The forest cover

of the district comprises around 23% of the total topographical area. The study

assessed desertification vulnerability using two approaches: Medalus Approach

and Fuzzy Logic Approach. The Medalus approach is a participatory approach

that relies on the knowledge and expertise of local stakeholders, while the Fuzzy

Logic approach is a data-driven approach that uses quantitative data analysis.

The study used two sets of data to calculate the Desertification Vulnerability In-

dex (DVI): the environmental sensitive index (ESI) and the socio-economic index

(SEI). These two indices were represented spatially in a GIS environment to iden-

tify the areas at risk of desertification and their severity. The findings showed

that the Panchmahal district is mostly under low severity level using the Medalus

approach, while the Fuzzy Logic approach identified the district as primarily un-

der moderate vulnerability. The high-risk zone had a similar geographic loca-

tion using both methods, but there were significant differences in lower sever-

ity conditions. Lastly the study aimed to assess the aridity zones and potential

desertification-prone areas based on aridity index maps for the Gujarat state. The

region was divided into three zones based on aridity: arid, semi-arid, and sub-

humid. The study used in-situ meteorological observatory data and the Penman-

Monteith method to develop aridity index maps for Gujarat. The comparison of

the developed map with the globally available CGIAR-CSI AI map revealed small

patches of arid zones in some districts, indicating the potential for desertification.

To assess the impact of aridity on vegetation, the study compared the aridity index

maps with the normalized difference vegetation index (NDVI) during normal and

drought situations in 2008 and 2012. The results showed a positive correlation be-

tween NDVI and aridity, as the AI values increased, the NDVI also increased. The
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study found a correlation coefficient value is nearly 0.7 when comparing the AI

map with the NDVI map using pixel-based correlation. The study highlights the

importance of using aridity index maps to identify potential desertification-prone

areas and assess the impact of aridity on vegetation.

6.1 Key Findings and Implications of the thesis

• The study analyzed desertification in two areas of Gujarat, India, using a

three-stage algorithm that included object-based and pixel-based classifica-

tion methods. The SLIC with RF approach was found to be the most accu-

rate method for classifying level 1 land cover, achieving an accuracy score

of 80%.

• Object-based classification resulted in more cohesive and smooth polygons

representing different land cover classes, as compared to pixel-based classi-

fication.

• The study identified the desertification process in level 2 classification using

RF and SVM algorithms for two different desertification processes eg. veg-

etation degradation in forest and salinity degradation in agriculture area.

And found Random forest model using features focusing on the particular

property is efficient for identifying the degradation process.

• Environment covariates used for predictive soil mapping and parameters

such as relief (topography), climate-related variables, and vegetation-related

variables are most important for soil properties prediction.

• The study highlighted the importance of proper covariates selection and

preparation for accurate and efficient predictive soil mapping (DSM) ac-

tivities. RFE with linear regression was used to identify the most relevant

covariates or features that are most predictive of the target soil properties.

• The study found that machine learning models can be effective in predicting

soil properties, but it is important to use appropriate evaluation metrics to
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accurately compare the performance of different models.

• The study analyzed the desertification vulnerability of the Panchmahal dis-

trict of Gujarat using various environmental and socio-economic indices,

identifying the areas at risk of desertification and their severity.

• The Medalus approach and Fuzzy Logic approach were used to calculate the

Desertification Vulnerability Index (DVI) based on environmental sensitiv-

ity and socio-economic indices. The Panchmahal district was mostly under

low severity level using the Medalus approach, while the Fuzzy Logic ap-

proach identified the district as primarily under moderate vulnerability.

• The study assessed the aridity zones and potential desertification-prone ar-

eas based on aridity index maps for Gujarat state, identifying three zones:

arid, semi-arid, and sub-humid.

• The study demonstrated the effectiveness of machine learning algorithms in

analyzing and assessing desertification in different regions, providing valu-

able insights into the severity of desertification.

6.2 Future Work

• The study conducted a desertification assessment using remote sensing data

for two areas in Gujarat, India. Future work could expand the analysis to

other regions in India or other countries with similar environmental condi-

tions to assess the effectiveness of the proposed algorithm for desertification

assessment. This could be implemented on a state or regional level to mon-

itor the desertification process and its severity over time continuously.

• To improve the accuracy of desertification pattern recognition, additional

desertification processes such as water erosion, wind erosion, water- log-

ging, urbanization and mass movement can be included in level 2 classifi-

cation. This would enable a more comprehensive assessment of the extent

and severity of desertification.

112



• Future work could explore different segmentation techniques and machine

learning algorithms for classification to improve the classification and de-

sertification assessment accuracy. Ensemble models, which combine other

models, could also be explored having less complexity and faster compu-

tation power. Ensemble models could help reduce errors and improve the

overall performance of the algorithm.

• The study used medium-resolution data, and future work could explore the

use of high-resolution data, such as satellite images, to improve the accuracy

of the classification and desertification assessment. High-resolution data can

provide more detailed information about land cover and vegetation, which

is crucial for assessing desertification.

• The study showed that machine learning models especially artificial neural

networks can be effective in predicting soil properties. Future work could

use these models for soil property mapping, which is essential for sustain-

able land management and agriculture. Soil property mapping can help

identify areas of land degradation and assist in developing appropriate soil

management strategies.

• The study used a limited number of meteorological observatory station points

to calculate the aridity index for Gujarat. However, the aridity index is a use-

ful tool for identifying and monitoring desertification hotspot regions. To

locate more desertification-prone zones with greater accuracy, village-level

climate data will be essential. The study also found a positive correlation

between the aridity index and the Normalized Difference Vegetation Index

(NDVI), indicating that vegetation indices are useful for monitoring deser-

tification over time.

• Desertification is a global issue, and climate change is expected to exacer-

bate its effects. Future work could investigate the impact of climate change

on desertification using machine learning and remote sensing techniques.

This could help predict future desertification trends and assist in develop-

ing appropriate mitigation and adaptation strategies.
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• The study used two approaches for desertification assessment. Future work

could explore other approaches, such as machine learning-based or partici-

patory approaches, for desertification assessment. Comparing different ap-

proaches could help determine the most effective approach for desertifica-

tion assessment.

• The study assessed desertification vulnerability using environmental and

socio-economic indices. Future work could investigate the impact of other

environmental indices and socio-economic factors such as population growth,

livestock information, transportation information, land use changes, and

migration on desertification. This could help identify the drivers of deserti-

fication and assist in developing appropriate mitigation strategies.

• Develop a monitoring system: Desertification is a gradual process that can

take years or even decades to manifest. Future work could develop a moni-

toring system using machine learning and remote sensing techniques to de-

tect the early signs of desertification and prevent its spread. A monitoring

system could help track the progress of desertification over time and assist

in developing appropriate mitigation strategies.
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CHAPTER A

Desertification Status classification using Ga-

bor filters

A.1 Abstract

Desertification is one of the most main environmental problems in the world. Pat-

tern recognition is one of the crucial step for monitoring of desertification process.

Texture of the image is a primary characteristics for retrieving visually similar pat-

terns in remote sensing images. Remote senmagesing applications are data rich as

they rely increasingly on high dimensional imagery. Gabor filter have been found

to be particularly appropriate for texture representation and discrimination. In

the present studies, desertification status classification was carried out using Ga-

bor filtering. Multi-temporal IRS AWiFs dataset were used for classification input

data. Gabor filter were applied on input dataset and new features were generated

for classification. Support vector classification algorithm is used for classifying

desertification status using both original and filtered dataset and compared. Ex-

perimental results shows considerate improvement in accuracy for Gabor filtered

dataset as compared to original dataset.

A.2 Introduction

Desertification and Land Degradation risk is one of the major environmental and

socio-economic which constantly affects the global environment. Understanding

of the desertification status help us The Gabor filter is a linear filter used in nu-
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Table A.1: Dataset Specification

Dataset Resolution Date

7/Oct/2010
IRS AWiFS 56m 28/Feb/2011

5/June/2011
DSM 56m 2011-13 cycle

merous image processing application for edge detection, texture analysis, feature

extraction, etc. Frequency and orientation representations of Gabor filters are sim-

ilar to those of the human visual system, and they have been found to be partic-

ularly appropriate for texture representation and discrimination. Simple cells in

the visual cortex of mammalian brains are modeled by Gabor functions. Thus, im-

age analysis with Gabor filters is thought to be similar to perception in the human

visual system. Gabor filters are special classes of band-pass filters, i.e., they allow

a certain band of frequencies and reject the others. A Gabor function is viewed as

a sinusoidal plane modulated by a Gaussian envelope. Gaussian provides weight

and sinusoid provides direction.

A.3 Methodology

The study area used is the part of Surendranagar district of Gujarat state. It lies

between the parallels of latitude 22ž 8 and 23ž 38 and the meridians of longitude

71ž 00and 72ž 02. It is bounded on the north by the little Rann of Kutch. IRS AW-

iFs Datasets were collected for all three seasons and its specifications are given in

table 1. Desertification status map (DSM) of Surendranagar district prepared un-

der Desertification status mapping of India2nd cycle was used as a classification

output map for training[136].

The areas of desertification are divided into patches or group of pixels which

are segregated as training and testing samples. Gabor filter as shown in equa-

tion (1) was used on input data for spatial feature extraction. The Gabor filter

is a linear filter used in numerous image processing application for edge detec-

tion, texture analysis, feature extraction, etc. Gabor filters have been found to be
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particularly appropriate for texture representation and discrimination. Extracted

features from Gabor filter then used for SVM supervised classification.

G(x, y) = e

(

−x′
2
+γ2y′

2

2σ2

)

cos

(

2πx′

λ

)

(A.1)

x′ = x cos θ + y sin θ (A.2)

y′ = −x sin θ + y cos θ (A.3)

where σ is the variance of the Gaussian function, λ is the wavelength of the

sinusoidal function, θ is the orientation of the normal to the parallel stripes of

the Gabor function and γ is the spatial aspect ratio specifies the ellipticity of the

support of the Gabor function. For,γ = 1 the support is circular. For γ < 1 the

support is elongated in the orientation of the parallel stripes of the function.

A.4 Result & Discussion

Figure A.1 demonstrates the classification accuracy achieved using Support Vec-

tor Machines (SVM). The results indicate that the SVM approach alone yielded an

accuracy of 87% with a kappa value of 0.47. However, when Gabor filtering was

applied prior to SVM classification, the accuracy improved to 91% with a kappa

value of 0.59. This suggests that the inclusion of Gabor filtering significantly en-

hances the accuracy of image classification compared to the standard approach

without filtering.

A.5 Conclusion

In this abstract, an efficient image classification technique has been proposed

for multispectral remote sensed satellite images with the aid of clustering and

Support Vector Machines (SVM). The proposed method classification technique

comprises Gabor feature extraction and classification of the resultant image using
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(a) (b) (c)

Figure A.1: (a) Original Classification Training Image, (b) Classification using
SVM, (c) Classification using Gabor + SVM

SVM. The Gabor filter improves the classification performance as it is able to get

the texture features from the data accurately.
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CHAPTER B

Action plan generation for combating land degra-

dation at micro-watershed level

Desertification is land degradation in arid, semi-arid, and dry sub-humid areas

resulting from various factors, including climatic variations and human activi-

ties, said by UNCCD. 30% of Indias total geographical area being affected by

land degradation and to prevent it combating plan for land degradation is nec-

essary. From multi-date satellite data and ancillary information with other the-

matic maps, e.g. Land use/ land cover, vegetation cover, land capability and

slope are prepared. Realizing the importance of adopting an integrated approach,

and recognizing the mutual interdependence of natural resources, thematic infor-

mation is integrated using python programming platform. In order to integrate

various themes, firstly, land use/ land cover layer is integrated with vegetation

cover layer. The resultant of these two themes is unionized with slope and finally

with land capability. The resultant coverage has the basic information of all the

four themes- land use/ land cover, vegetation cover, land capability and slope

and referred in resource data base. Various map units known as composite land

development units (CLDU) are created in this composite layer. Overall method-

ology for combating desertification is given in figure 2 below. Based on the CLDU

characteristics various measures are suggested for conservation and protection of

natural resources. The decision rules, given in Table 1 are used to suggest the

appropriate action plan for each of the CLDU.
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B.1 Methodology

To develop CLDU first area has been identified which comes under the semi-arid

to desertified zone. From that region micro-watershed has been chosen to develop

the action plan of combating desertification. To generate CLDU, along with satel-

lite images, ancillary data also need to stack with different thematic maps. After

that, unique combination of the all stacked data has been identified. And from

the thousands of the unique combinations, it becomes so difficult to decide the

action plan. So, less than 5Ha area has been unionized to the nearby region and

try to classify the region with heterogeneity. So, the different action plan can be

generated against each unique combination or the process that lead the region to

desertification. With the help of expert advice and knowledge some of the action

plan has been generated to increase overall vegetation cover in terms of increasing

the NDVI of the region and cutting off or reduce the run-off of the region.

The lookup table B.1 developed with expert advice serves as a crucial tool for

proactive decision-making and planning in the face of various challenges and in-

forms policy recommendations for tackling desertification and land degradation.

By deriving conclusions from the data, it guides effective policy implications, aid-

ing strategies to counter these challenges through informed decision-making and

sustainable land management practices. It empowers authorities to make well-

informed choices that can mitigate risks, enhance resilience, and contribute to the

overall well-being of the affected region and its inhabitants.
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Table B.1: Strategic Framework: Micro-Watershed Level Action Plan for Combat-
ing Land Degradation

CLDU*_Code DSM-CODE LULC* Slope (%) LCAP* GWP* Combat Action/Prescription

1
Fv1 Open forest 15-25, >25 2, 6, 7

Moderate AfforestationFv2 Open forest 15-25, >25 2, 6, 7
Fv3 Degraded forest 0-5, 5-10, 10-15, 15-25, >25 1,2,6,7

2
Fw1 Open forest 5-10, 15-25

6 Moderate Afforestation and soil conservation measures
Fw2 Degraded forest >25

3

Fw4 Open forest 15-25, >25 7

Moderate Afforestation/grasslands and soil conservation measures
Fw4 Degraded forest 0-5, 10-15,15-25, >25 6, 7

Fw3 Degraded forest 0-5, 5-10, 10-15, 15-25, >25 6, 7

4
Iw4 Permanent fallow 15-25, >25 6, 7

Moderate Contour bunding and orchard development
Iw2 Permanent fallow 15-25 7

5 NAD Permanent fallow 5-10, 10-15, 15-25, >25 2, 6, 7 Moderate Contour bunding/ Grassland land development

6

Sv3 Land without scrub 10-15,15-25,>25 6,7

Moderate Contour bunding/Social Forestry development
Sv4 Land without scrub 10-15,15-25, >25 6,7
Sw2 Land without scrub 15-25 6
Sw3 Land without scrub 10-15,15-25, >25 6, 7

7 Sv1 Land with scrub 5-10, 10-15 2, 7 Moderate Fencing to control overgrazing

8
Fv1 Open forest 0-5, 5-10, 10-15 2, 6, 7

Moderate Forest Plantation
Fv2 Open forest 0-5, 5-10, 10-15 2, 6, 7

9 NAD Permanent fallow 5-10, 10-15 6, 7 Moderate Not suitable for agriculture/Pasture-grassland land development

10 NAD
Single crop 0-5, 5-10 6, 7

Moderate Not suitable for agriculture/Soil conservation measuresDouble crop 0-5, 5-10 6, 7
Tripple crop 0-5, 5-10 6, 7

11
NAD

Single crop 10-15, 15-25, >25 6, 7 Moderate

Over utilized/Soil conservation measures
Double crop 10-15, 15-25, >25 6, 7 Moderate
Tripple crop 10-15, 15-25, >25 6, 7 Moderate

Sv1 Land with scrub 15-25, >25 6, 7
Sv2 Land with scrub 15-25, >25 6

13
NAD Plantations 0-5, 5-10, 10-15, 15-25,>25 2, 6, 7

Moderate Forest Protection/Conservation
NAD Dense forest

14 NAD Sandy area Moderate Sandy area
15 S Settlements Moderate Settlements
16 Sw4 Land without scrub 05-Oct 7 Moderate Social Forestry development

17

Iw3

Single crop

15-25 7

Moderate Soil conservation measures

Iw4 >25 6
Iw1 >25 6
Iw2 >25 6

NAD
Triple crop

Oct-15 2
Iw2 >25 6

NAD >25 6

18
Fv3 Degraded forest 0-5, 5-10, 10-15 2, 7

Moderate Strictly reclamation and conservation /protection
Fv4 Degraded forest 5-10, 10-15, 15-25, >25 1,2, 6, 7

19 NAD
Single crop 0-5, 5-10 2

Moderate Sustainable maintenanceDouble crop 0-5, 5-10 2
Triple crop 0-5, 5-10 2

20 NAD
Single crop 10-15, 15-25 2

Moderate Terrace farmingDouble crop 10-15, 15-25, >25 1, 2
Triple crop 10-15, 15-25, >25 2

21 NAD Permanent fallow 0-5 2 Moderate Underutilized/ can be used for agriculture
22 NAD Permanent fallow 10-15, 15-25 2 Moderate Underutilized/ can be used for Terrace farming in sustainable way
23 W Water bodies

*CLDU = Composite land development units, *LULC = Land use-Land Cover,

*LCAP = Land Capability, *DSM = Desertification status map, *GWP= Ground

water prospects.
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